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All the results presented in this talk were obtained in collaboration with Maria
D. Acosta (Universidad de Granada) and Pablo Galindo (Universidad de
Valência). They are part of the paper

Tauberian Polynomials - Journal of Mathematical Analysis and Applications
409 (2014) 880-889.
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Tauberian operators

X ,Y = real or complex Banach spaces.

• Known: a continuous linear operator T : X → Y is weakly compact if
T tt(X ) ⊂ Y (where T tt denotes the second adjoint of T ).

Definition
A continuous linear operator T : X → Y is Tauberian if (T tt)−1(Y ) ⊂ X or,
equivalently, if T tt(X ′′ \ X ) ⊂ Y ′′ \ Y .

Examples
• If Z is a closed subspace of X :
(1) the canonical immersion J : Z → X is a Tauberian operator;
(2) the quotient operator QZ : X → X/Z is Tauberian if and only if Z is

reflexive.

• The canonical immersion ι of the James space J in c0 is a Tauberian
operator.
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Tauberian operators

N. Kalton and A. Wilansky studied these operators in Tauberian operators
on Banach spaces, Proc. Amer. Math. Soc. 57 (1976), and refered to them
as Tauberian operators.

We also refer to the recent monograph:
M. González and A. Martínez-Abejó, Tauberian Operators, Operator
Theory: Advances and Applications 194 Birkhäuser Verlag, Basel (2010).

Some applications of Tauberian operators in the theory of Banach spaces:

• in the proof of the Davies, Figiel, Johnson and Pelczyński Factorization
Theorem [cf. Factoring weakly compact operators, J. Funct. Anal. 17
(1974)].

• in the proof of the equivalence between the Radon-Nikodym property and
the Krein-Milman property given by Schachermayer [cf. For a Banach space
isomorphic to its square the Radon-Nikodým property and the
Krein-Milman property are equivalent, Studia Math. 81 (1985)].
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Homogeneous Polynomials

Notation:

P(NX ,Y ) = space of the continuous N-homogeneous polynomials from X
into Y .

P(NX ) = P(NX ,K).

P(X ,Y ) = space of all continuous polynomials from X into Y .

‖P‖ = sup{‖P(x)‖ : ‖x‖ ≤ 1}.

Pwu(
NX ,Y ) = space of all P ∈ P(NX ,Y ) whose restrictions to bounded

subsets of X are weakly continuous.

Aron and Berner showed that to each P ∈ P(NX ,Y ) corresponds a
P̃ ∈ P(NX ′′,Y ′′) such that P̃|X = P.

Davie and Gamelin showed (10 years latter) that ‖P̃‖ = ‖P‖.
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Tauberian Polynomials

Definition
We say that P ∈ P(NX ,Y ) is Tauberian if P̃ satisfies P̃(X ′′ \ X ) ⊂ Y ′′ \ Y or,
equivalently, P̃−1(Y ) ⊂ X .

Examples
• X reflexive⇒ P ∈ P(NX ,Y ) is Tauberian for all Y and N ∈ N.

• Y reflexive and X non reflexive⇒ every P ∈ P(NX ,Y ) is not a Tauberian
polynomial.

• ι2 : J → c0 given by ι2(x) := (ι(x))2 is a Tauberian polynomial (where ι is
the canonical embedding of the James space J into c0).

• X non reflexive and P : X → Y weakly compact N-homogeneous
polynomial⇒ P is not Tauberian. In particular, every element of Pwu(

NX ,Y )
is not a Tauberian polynomial.
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Polynomials versus the symmetric tensor product

⊗̂N,s,πX = the completion of the N-fold symmetric tensor product of X ,
endowed with the projective norm.

Well known:
• ⊗̂N,s,πX is a Banach space whose topological dual is linearly isomorphic to
the space P(NX ).

• L(⊗̂N,s,πX ,Y ) is linearly isomorphic to the space P(NX ,Y ).

More explicitly, each P ∈ P(NX ,Y ) can be identified with a linear operator
LP ∈ L(⊗̂N,s,πX ,Y ) such that P(x) = LP(x ⊗ · · · ⊗ x) ∀x ∈ X .

We say that LP is the linearization of P.

If δ : X → ⊗̂N,s,πX is the N-homogeneous polynomial given by
δ(x) = x ⊗ · · · ⊗ x , we have P = LP ◦ δ for every P ∈ P(NX ,Y ).
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Tauberian Polynomials

Example
The mapping δ : x ∈ X → x ⊗ · · · ⊗ x ∈ ⊗̂N,s,πX is a Tauberian polynomial

Proposition
Assume that P ∈ P(NX ,Y ) is a Tauberian polynomial and T ∈ L(Y ,Z ) is a
Tauberian operator, then T ◦ P is a Tauberian polynomial. A partial converse
holds: if T ◦ P is a Tauberian polynomial, then P itself is Tauberian.

Corollary
If the linearization of P ∈ P(NX ,Y ) is Tauberian, then P itself is Tauberian.

However:

P = Tauberian polynomial ; its linearization TP is Tauberian.
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Tauberian Polynomials

Example:

Recall that the quotient operator QZ : X → X/Z is Tauberian ⇔ Z is
reflexive.

Hence:

`2⊗̂s,π`2 contains a copy of `1 ⇒ the quotient mapping

q : `2⊗̂s,π`2 →
`2⊗̂s,π`2

`1

is well defined and is not a Tauberian operator.

However, the polynomial

x ∈ `2 7→ P(x) := x ⊗ x + `1 ∈
`2⊗̂s,π`2

`1

is Tauberian (since `2 is reflexive) and

P(x) = q(x ⊗ x) ⇒ q is the linearization of P.
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Tauberian Polynomials versus Tauberian Operators

Natural question:

Let Y be a Banach algebra and X be a Banach space. Consider Y ′′ endowed
with the left Arens product.

T : X → Y Tauberian operator ?⇔ T n : X → Y Tauberian polynnmial

⇐: Yes.
⇒: No. We have the following counter-example:
In X = C([0,1]), the identity operator I : X → X is Tauberian (clear), but
P : X → X defined by P(f ) = I(f )2 = f 2 for all f ∈ X = C([0,1]) is not
Tauberian.
Steps:
• Associate the function g0 := χ[0,1[ − χ{1}, which is bounded and Borel
measurable on [0,1], to an element of C([0,1])′′\C([0,1]).
• Show that P̃(g0) = g2

0 .

From this g0 ∈ C([0,1])′′\C([0,1]) and P̃(g0) ∈ C([0,1]) since g2
0 is the

constant function 1 which is in X .
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Tauberian Operators ( Known characterizations)

Proposition
If T : X → Y is linear and continuous, the following are equivalent:
(1) T ′′(X ′′ \ X ) ⊂ Y ′′ \ Y (i.e., T is Tauberian).
(2) If B ⊂ X is a bounded set such that T (B) is weakly relatively compact,

then B is weakly relatively compact.
(3) If B ⊂ X is a bounded set such that T (B) is relatively compact, then B is

weakly relatively compact.

Proposition
If X is a weakly sequentially complete Banach space, Y is an arbitrary Banach
space and T : X → Y is linear and continuous, the following are equivalents:
(1) T ′′(X ′′ \ X ) ⊂ Y ′′ \ Y .
(2) (T ′′)−1(0) = T−1(0).
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Tauberian Polynomials

Because of the lack of linearity, some difficulties arise:

• Given P ∈ P(NX ,Y ), we can’t say in general that P(X ) is a linear subspace
of Y .

• In general it is not true that P(A) is a convex subset of Y whenever A is a
convex subset of X .

Consequently, the weak topology can not play the same role as in the linear

setting. For instance, the equality T tt(A
w∗

) = T (A)
w∗

for all bounded and
convex subset A of X cannot be extended to the case of polynomials since in
general P(A) is not convex.

The polynomial topology τp (resp. τpN ) on X is the smallest topology for
which a net (xα) converges to x if and only if P(xα)→ P(x) ∀P ∈ P(X )
(resp. ∀P ∈ P(mX ) para todo m ≤ N ∈ N).

The polynomial-star topology τp∗ (respectively, τp∗N ) on X ′′ is the smallest
topology for which a net (zα) converges to z if and only if
P̃(zα)→ P̃(z) ∀P ∈ P(X ) (resp. ∀P ∈ P(mX ) para todo m ≤ N ∈ N).
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The polynomial topologies τp and τp∗

Theorem (Davie and Gamelin)
Let S be a bounded subset of X and suppose that z ∈ X ′′ is w∗-adherent to
S. Then there exists a net (xα) in X such that each xα is an arithmetic mean
of distinct elements of S, and P(xα) converges to P̃(z) for all P ∈ P(X ).

Theorem (Davie and Gamelin)
Let S be a bounded convex subset of X . Then the weak*-closure of S in X ′′

coincides with the polynomial-star closure of S in X ′′.

There is not a general Banach Alaoglu Polynomial Theorem, but we showed
the following:

Banach Alaoglu Polynomial Theorem
If X is a Banach space, then Pwu(

NX ) = P(NX ) if and only if every bounded
and τp∗N -closed subset A of X ′′ is compact in the τp∗N -topology. A similar
statement holds for the equality P(X ) = Pwu(X ) and the τp∗ -topology.
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Tauberian Polynomials

Theorem
Let y ∈ Y , and P ∈ P(NX ,Y ). The following statements are equivalent:
(a) P̃−1(y) ⊂ X .

(b) If (xα)α∈Λ is a net in X such that P(xα)
w→ y , then every τp∗N -cluster point

of
(
xα
)
α∈Λ

belongs to X .

Corollary
Let P ∈ P(k X ,Y ). The following statements are equivalent:
(a) P̃−1(0) = P−1(0).

(b) If (xα) is a net in X such that P(xα)
w→ 0, then every τp∗k -cluster point of(

xα
)

belongs to X .
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Tauberian Polynomials

Theorem
Let P ∈ P(NX ,Y ). Consider the following statements:
(a) P is Tauberian.
(b) P(BX ) is weakly closed and x ′′ ∈ X whenever x ∈ X , x ′′ ∈ X ′′ and

P̃(x ′′) = P(x).
(c) P(BX ) is weakly closed and P̃−1(0) = P−1(0).

Then (b)⇒ (a) and (c), and whenever Pwu(
NX ) = P(NX ), (a)⇒ (b).

In general, (a) ; (b):
P : `2 → C given by

P(x) =
∞∑

n=1

(
1− 1

n

)
x2

n , for all x ∈ `2 .

is Tauberian (since `2 is reflexive).

But P(B`2) is not closed in C since
(
P(en)

)
=
(
1− 1

n

)
→ 1 and 1 /∈ P(B`2) as∣∣∣∑∞n=1

(
1− 1

n

)
x2

n

∣∣∣ < 1 ∀x ∈ B`2 .
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Tauberian Polynomials

(c) ; (a) and so (c) ; (b) :

Let X = C([0,1],R), I : X → X the identity operator and P = I2 ∈ P(2X ,X ).
• Already shown: P does not satisfy (a). However:

• P(BC([0,1])) = {f ∈ BX : f (t) ≥ 0,∀t ≥ 0} is weakly closed (easy)
• P̃−1(0) = {0} = P−1(0) (not so easy)

Remark

x ′′ ∈ X whenever x ∈ X , x ′′ ∈ X ′′ and P̃(x ′′) = P(x) implies P̃−1(0) = P−1(0)
but the converse is not true.
Let T : c0 → `2 the bounded linear operator given by T ((xn)) = (yn) where

y1 = x1, yn+1 =
1

n + 1
(
xn+1 − xn

)
, ((xn) ∈ c0) .

• T is well defined and Ker T = {0} (easy).
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Tauberian Polynomials

• Now show that T tt : `∞ → `2 is given by T tt((yn)) = (zn) where

z1 = y1, zn+1 =
1

n + 1
(
yn+1 − yn

)
, for every (yn) ∈ `∞ = c′′0 (1)

• Ker T tt = {0} (easy)
• Consider P : c0 → `2 defined by

P(x) := T 2(x) = T (x) · T (x) (x ∈ c0) .

It is known that

P̃(y) = T tt(y) · T tt(y), for all y ∈ `∞ .

Hence

P−1(0) = Ker T = {0} = Ker T tt = P̃−1(0).
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Tauberian Polynomials

Finally take

x0 =
( 1

2n−1

)∞
n=1
∈ c0 and y0 =

(
−

n∑
k=1

1
2k−1

)∞
n=1
∈ `∞\c0 ,

it is very easy to check that

T (x0) =
(

1, − 1
2 · 2

, − 1
22 · 3

, · · · ,− 1
2n(n + 1)

, · · ·
)

and
T (y0) =

(
−1, − 1

2 · 2
, − 1

22 · 3
, · · · ,− 1

2n(n + 1)
, · · ·

)
.

Hence P̃(y0) = P(x0) for some x0 ∈ c0 and y0 ∈ `∞\c0, as we wanted.
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Tauberian Polynomials

Theorem (Kalton and Wilansky)
An operator is Tauberian if and only if bounded subsets that are mapped into
relatively weakly compact sets are relatively weakly compact.

Remark

In general it may happen that the image of a non τpN -relatively compact
subset under a Tauberian polynomial is weakly relatively compact. Indeed:

• Known: P(N`2) 6= Pwu(
N`2),

By the Banach Alaoglu Polynomial Theorem,
P(N`2) 6= Pwu(

N`2)⇒ ∃A ⊂ `2 bounded but not τpN -relatively compact.

Take P : `2 → C given by

P(x) =
∞∑

n=1

(
1− 1

n

)
x2

n , for all x ∈ `2 .

So, P is Tauberian (since `2 is reflexive) and P(A) ⊂ C is weakly relatively
compact (clear) and A ⊂ `2 is not τpN -relatively compact.
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Tauberian Polynomials

By assuming extra conditions on the domain space we have: .

Theorem
Let P ∈ P(NX ,Y ) be a Tauberian polynomial. If C is a bounded subset of X
such that P(C) is weakly relatively compact, then the closure of C for the
τp∗N -topology lies in X . If moreover, P(NX ) = Pwu(

NX ), then C is τpN -relatively
compact.

For separable Banach spaces we have

Theorem
Let X be separable and P(NX ) = Pwu(

NX ). The polynomial P ∈ P(NX ,Y ) is
Tauberian if and only if every bounded subset C of X such that P(C) is weakly
relatively compact is weakly relatively compact.
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Tauberian Polynomials

Examples:

• X = T ∗J (the Tsirelson-James space)

• X = d∗(w ,1) whenever w /∈ `N . (where d∗(w ,1)denotes the canonical
pre-dual of the Lorentz sequence space d(w ,1), where w is a null sequence
of positive real numbers such that w /∈ `1
• X = C(K ) where K is a metrizable dispersed compact Hausdorff topological
space.

Theorem
Let P ∈ P(NX ,Y ). Assume that the weak topology on P(BX )

w
is metrizable. If

every bounded subset C of X such that P(C) is weakly relatively compact is
τpN -relatively compact, then P is Tauberian and P(BX ) is weakly closed.
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