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A characterization of continuity

Theorem

If f : R→ R is continuous then

1 f transforms connected sets into connected sets.

2 f transforms compact sets into compact sets.

Theorem

If f : R→ R is a function such that

1 f transforms connected sets into connected sets,

2 f transforms compact sets into compact sets, and

then f is necessarily continuous.
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Gustavo Adolfo Muñoz Fernández On a characterization of continuity



The characterization Only one property Polynomials

A characterization of continuity

Theorem

If f : R→ R is continuous then

1 f transforms connected sets into connected sets.

2 f transforms compact sets into compact sets.

Theorem

If f : R→ R is a function such that

1 f transforms connected sets into connected sets,

2 f transforms compact sets into compact sets, and

then f is necessarily continuous.
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A characterization of continuity

Motivation for the generalization

A function f : R→ R is continuous in R if and only if

f −1(U) is open for all open set U ⊂ R.

Is the previous definition equivalent to

f (U) is open for all open set U ⊂ R?

Obviously, the answer is NO, but:

Is there a family F of subsets of R such that

f is continuous if and only if f (U) ∈ F for all U ∈ F .

The answer again is no, but the result is highly nontrivial.
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A characterization of continuity

Theorem (Velleman (1997))

There are not families F and G of subsets of R such that

f : R→ R is continuous if and only if f (U) ∈ G for all U ∈ F .

Theorem (Velleman (1997), Hamlett (1975), White (1968))

There are two families F and G of subsets of R such that
f : R→ R is continuous if and only if

1 f (U) ∈ F for all U ∈ F , and

2 f (V ) ∈ G for all V ∈ G.
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Gustavo Adolfo Muñoz Fernández On a characterization of continuity



The characterization Only one property Polynomials

A characterization of continuity

Theorem (Velleman (1997))

There are not families F and G of subsets of R such that

f : R→ R is continuous if and only if f (U) ∈ G for all U ∈ F .

Theorem (Velleman (1997), Hamlett (1975), White (1968))

There are two families F and G of subsets of R such that
f : R→ R is continuous if and only if

1 f (U) ∈ F for all U ∈ F , and

2 f (V ) ∈ G for all V ∈ G.
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A characterization of continuity

The characterization again

A plausible choice for F and G in the previous theorem is the
following:

1 F is the family of all connected subsets of R (the intervals),
and

2 G is the family of all compact subsets of R.

A generalization of the characterization

1 The same result holds for functions f : X → Y where X is
first countable and locally connected and Y is regular.

2 However the result is not true for functions between metric
spaces in general.
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Gustavo Adolfo Muñoz Fernández On a characterization of continuity



The characterization Only one property Polynomials

A characterization of continuity

The characterization again

A plausible choice for F and G in the previous theorem is the
following:

1 F is the family of all connected subsets of R (the intervals),
and

2 G is the family of all compact subsets of R.

A generalization of the characterization

1 The same result holds for functions f : X → Y where X is
first countable and locally connected and Y is regular.

2 However the result is not true for functions between metric
spaces in general.
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The characterization Only one property Polynomials Connected into connected Compact into compact

Derivatives as connected functions

Theorem (Darboux)

If f : R→ R is differentiable, then f ′ is a Darboux functions, i.e.,
f ′ transforms intervals into intervals.

Derivatives are not necessarily continuous

The derivative of

G (x) =

{
x2 sin 1

x2 if x 6= 0,

0 if x = 0,

is not continuous at 0.
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Derivative with uncountably many discontinuities

Volterra construction

1 Choose x0 > 0 so that G ′(x0) = 0.

2 Define G0 : (0, 2x0)→ R as follows:

G0(x) =

{
G (x) if x ∈ (0, x0],

G (2x0 − x) if x ∈ [x0, 2x0).

3 Using translations and homothetic transformations of G0, F
coincides with a copy of G0 in every interval (a, b) of
[0, 1] \ C , where C is the Cantor set.

4 We put F (x) = 0 for all x ∈ C .

5 F is differentiable in [0, 1] but F ′ is not continuous in C .
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Derivative with uncountably many discontinuities
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Derivatives that are discontinuous almost everywhere

Definition (Aron, Gurariy, and Seoane (2004))

A subset V of a linear space E is λ-lineable if V ∪ {0} contains a
linear space of dimension λ.

Theorem (Gámez, Muñoz, Sánchez, and Seoane (2010))

The set of differentiable functions on R whose derivatives are
discontinuous almost everywhere is c-lineable.

Corollary

The set of functions f : R→ R that transform connected sets into
connected sets and are discontinuous almost everywhere is
c-lineable.
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Everywhere surjective functions

Definition

A function f : R→ R is everywhere surjective if f (I ) = R for all
nontrivial interval I .

Theorem (Aron, Gurariy, and Seoane (2004))

The set of everywhere surjective functions on R is 2c-lineable.

Corollary

The set of functions f : R→ R that transform connected sets into
connected sets and are discontinuous everywhere is 2c-lineable.
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Functions that transform compact sets into compact sets

Theorem (Gámez, Muñoz, and Seoane (2011))

The set of functions f : R→ R that have finite range (and hence
transform any set into a compact set) and are everywhere
discontinuous is 2c-lineable.

Sketch of proof

Let H be a Hamel basis of R over Q.

Let ϕ : R→ RN a Q-linear isomorphism.

For all A ⊂ H we define fA(x) := χ([A]\{0})N(ϕ(x)), for all
x ∈ R.

Choose h0 ∈ H and consider
F = {fA : ∅ 6= A ∈ P(H), h0 /∈ A}. Then F is linearly
independent and its cardinality is 2c.
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A characterization of continuity for polynomials

Theorem (Gámez, Muñoz, Pellegrino, and Seoane (2011))

If E is a normed space and P is a polynomial on E then P is
continuous if and only it transforms compact sets into compact
sets.

Theorem (Gámez, Muñoz, Pellegrino, and Seoane (2011))

If E is a normed space and P ∈ P(nE ) with n = 1, 2, then P is
continuous if and only it transforms connected sets into connected
sets.

Conjecture

A polynomial P on a normed space E is continuous if and only if it
transforms connected sets into connected sets.
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continuous if and only it transforms connected sets into connected
sets.

Conjecture

A polynomial P on a normed space E is continuous if and only if it
transforms connected sets into connected sets.
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Theorem (Gámez, Muñoz, Pellegrino, and Seoane (2011))

If E is a normed space and P is a polynomial on E then P is
continuous if and only it transforms compact sets into compact
sets.
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A characterization of continuity for multilinear forms

Corollary (Gámez, Muñoz, Pellegrino, and Seoane (2011))

An n-linear form L on a normed space E is continuous if and only
if it transforms connected set in En into connected sets in R.

Theorem (Gámez, Muñoz, Pellegrino, and Seoane (2011))

If n ∈ N and E is a normed space of infinite dimension λ, then the
sets of the non-bounded n-linear forms, the non-bounded n-linear
symmetric forms, the n-homogeneous polynomials and the
polynomials of degree at most n on E are 2λ-lineable.
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