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The λ-function:

Let X be a normed space whose closed unit ball is denoted by X1. The
symbol ∂e(X1) will denote the set of extreme points of X1.

Given x and y in X1, e in ∂e(X1), and 0 < λ ≤ 1, following Richard’s notation,
we shall say that the ordered triplet (e, y , λ) is amenable to x when
x = λe + (1− λ)y .

[Aron and Lohman, Pacific J. Math.’1987]

The λ-function on X is the function λ : X1 → R+
0 , given by

λ(x) := sup{λ : (e, y , λ) is a triplet amenable to x}.
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The λ-function:

Let X be a normed space whose closed unit ball is denoted by X1. The
symbol ∂e(X1) will denote the set of extreme points of X1.

Given x and y in X1, e in ∂e(X1), and 0 < λ ≤ 1, following Richard’s notation,
we shall say that the ordered triplet (e, y , λ) is amenable to x when
x = λe + (1− λ)y .

[Aron and Lohman, Pacific J. Math.’1987]

The λ-function on X is the function λ : X1 → R+
0 , given by

λ(x) := sup{λ : (e, y , λ) is a triplet amenable to x}.

R. Aron
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The space X satisfies the λ-property if λ(x) > 0, for every x ∈ X1, that is, for
each x ∈ X there exists a triplet (e, y , λ) amenable to x .
The Banach space X has the uniform λ-property when«ınf{λ(x) : x ∈ X1} > 0.

Aron and Lohman studied the basic properties of the λ-function and
computed its explicit form on sequence spaces on Banach spaces. We shall
highlight what we need for our purposes:
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[Aron and Lohman, Pacific J. Math.’1987]

If X is a strictly convex space, then λ(x) = (1 + ‖x‖)/2 for all x ∈ X1 and λ(x)
is attained.
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Aron and Lohman studied the basic properties of the λ-function and
computed its explicit form on sequence spaces on Banach spaces. We shall
highlight what we need for our purposes:

[Aron and Lohman, Pacific J. Math.’1987]

Let T be a compact metric space and let X be an infinite-dimensional strictly
convex normed space. Then C(T ,X ) has the uniform λ-property. In fact, if
x ∈ C(T ,X ) and ‖x‖ ≤ 1, then λ(x) = (1 + m)/2, where

m =«ınf{‖x(t)‖ : t ∈ T}.

Moreover, if x(t) 6= 0 for all t ∈ T , λ(x) is attained. If dim(XR) ≥ 2, then
C([0,1],X ) has the uniform λ-property.
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Aron and Lohman studied the basic properties of the λ-function and
computed its explicit form on sequence spaces on Banach spaces. We shall
highlight what we need for our purposes:

[Aron and Lohman, Pacific J. Math.’1987]

Let X be a strictly convex normed space. Then `∞(X ) has the uniform
λ-property. In fact, if x = (xn) ∈ `∞(X ), with ‖x‖ ≤ 1 and
m =«ınf{‖x(n)‖ : n ∈ N}, then λ(x) = (1 + m)/2.
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The paper of Aron and Lohman concludes with a section of open problems. In
the first question they posed the following challenge:

“What spaces of operators have the λ-property,
and what does the λ-function
look like for these spaces?”

This question motivated a whole series of papers, written between 1990 and
1997, in which Brown and Pedersen determined the exact form of the
λ-function for von Neumann algebras and for unital C∗-algebras.
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The λ-function on C∗-algebras

Let me recall that, by the Gelfand-Naimark theorem, a C∗-algebra is a norm
closed, self-adjoint subalgebra of some B(H), the space of all bounded linear
operators on a complex Hilbert space H.

An element a satisfying any of the above statements is called quasi-invertible
or Brown-Pedersen quasi-invertible (BP-q-invertible for short).
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The λ-function on C∗-algebras

[Kadison, Ann. Math.’1951]

For a C∗-algebra A, the set ∂e(A1) is precisely the set of all maximal partial
isometries of A, i.e., elements e ∈ A satisfying that ee∗ and e∗e are
projections and (1− ee∗)A(1− e∗e) = 0.

An element a satisfying any of the above statements is called quasi-invertible
or Brown-Pedersen quasi-invertible (BP-q-invertible for short).
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The λ-function on C∗-algebras

[Brown, Pedersen, J. Reine. Angew.’1995]

Let a be an element in a unital C∗-algebra A, with group of invertible elements
denoted by A−1. The following are equivalent:
(a) a ∈ ∂e(A1)A−1∂e(A1);
(b) There is maximal partial isometry v ∈ ∂e(A1) with Ker(a) = Ker(v), such

that a = v |a| and 0 is an isolated point in the spectrum, σ(|a|), of |a|;
(c) a ∈ ∂e(A1)A−1

+ ;
(d) There is maximal partial isometry v ∈ ∂e(A1) such that a is positive and

invertible in the Peirce-2 subspace A2(v) = vv∗Av∗v associated to v .

An element a satisfying any of the above statements is called quasi-invertible
or Brown-Pedersen quasi-invertible (BP-q-invertible for short).
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Henceforth, the symbol A−1
q will denote the set of Brown-Pedersen

quasi-invertible elements in a unital C∗-algebra A.

[Pedersen, J. Operator Theory’1991]

Every von Neumann algebra (i.e. a C∗-algebra which is also a dual Banach
space) satisfies the uniform λ-property, actually the expression λ(a) = 1+mq(a)

2
holds for every element a in the closed unit ball of a von Neumann algebra.
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Henceforth, the symbol A−1
q will denote the set of Brown-Pedersen

quasi-invertible elements in a unital C∗-algebra A.

[Brown, Pedersen, Math. Scand.’1997]

For every element a in the closed unit ball of a unital C∗-algebra A the
following formula holds:

dist(a, ∂e(A1)) =

 m«ax {1−mq(a), ‖a‖ − 1} , if a ∈ A−1
q ;

m«ax {1 + αq(a), ‖a‖ − 1} , if a /∈ A−1
q ,

where αq(a) = dist(a,A−1
q ) and mq(a) = dist(a,A\A−1

q ).
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There is a strictly bigger class of complex Banach spaces which contains all
C∗-algebras.

In a complex Banach space X with dim(X ) > 1, a Riemann mapping theorem
is, in general, false and a classification of simply connected domains is
intractable. There are other domains which are better understood.

A domain D in a complex Banach space X is symmetric if for each a in D
there is a biholomorphic map Sa : D→ D (in Frechet’s sense) with Sa = S−1

a ,
such that a is an isolated fixed point of Sa.

E. Cartan classified all bounded symmetric domains in Cn, during the thirties.

[L. Harris, LNM 1973]

The open unit ball of a C∗-algebra is a bounded symmetric domain.
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(Un)fortunately, the above result of Harris doesn’t exhaust all possibilities in
infinite dimensional complex Banach spaces. The definitive classification
appeared in 1983.

[W. Kaup, Math. Z. 1983]

The open unit ball of a JB∗-triple is a bounded symmetric domain. Actually,
the category of all bounded symmetric domains (with base point) is equivalent
to the category of JB∗-triples.
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JB∗-triples
A JB∗-triple is a complex Banach space, E , equipped with a continuous triple
product

{., ., .} : E × E × E → E , (x , y , z) 7→ {x , y , z}

which is bilinear and symmetric in the outer variables and conjugate linear in
the middle one and satisfies the following axioms:

(a) (Jordan Identity)
L(x , y)L(a,b)− L(L(x , y)a,b) = L(a,b)L(x , y)− L(a,L(y , x)b), for every
x , y ,a,b ∈ E , where L(x , y) : E → E is the linear operator defined by
L(x , y)z = {x , y , z};

(b) For each x in E , the operator L(x , x) is hermitian with non-negative
spectrum;

(c) ‖ {x , x , x} ‖ = ‖x‖3, ∀x ∈ E .
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A JBW∗-triple is a JB∗-triple which is also a dual Banach space.

Examples:

Every C∗-algebra, A, is a JB∗-triple with respect to the triple product

{x , y , z} := xy∗z + zy∗x
2

(1)

The space, BL(H,K ), of all bounded linear operators between two
complex Hilbert spaces H,K is a JB∗-triple with respect to (1)
Every complex Hilbert space is a JB∗-triple.
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Projections→ tripotents

En element e in a JB∗-triple E is called tripotent when {e,e,e} = e.

[Tahlawi, Siddiqui, Jamjoom, AAA’2013, JMAA’2014]

An element a in a JB∗-triple E is Brown-Pedersen quasi-invertible when any of
the equivalent statements holds:
(a) There exists b ∈ E such that the Bergmann operator

B(a,b) = Id − 2L(a,b) + Q(a)Q(b) is zero;
(b) a is von Neumann regular and its range tripotent r(a) is an extreme point

of the closed unit ball of E (i.e. r(a) is a complete tripotent of E);
(c) There exists a complete tripotent e ∈ E such that a is positive and

invertible in the JB∗-algebra E2(e).
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Each tripotent e in E induces a Peirce decomposition of E in the form

E = E2(e)⊕ E1(e)⊕ E0(e),

where for i = 0,1,2, Ei(e) is the i
2 eigenspace of L(e,e). The Peirce space

E2(e) is a unital JB∗-algebra with unit e, product x ◦e y := {x ,e, y} and invo-
lution x∗e := {e, x ,e}, respectively. A tripotent e in E is called complete when
E0(e) = 0.

[Tahlawi, Siddiqui, Jamjoom, AAA’2013, JMAA’2014]
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[Braun, Kaup, Upmeier, Math. Z.’1978]

For a JB∗-triple E , the set ∂e(E1) is precisely the set of all maximal/complete
tripotents of E .

[Tahlawi, Siddiqui, Jamjoom, AAA’2013, JMAA’2014]
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The unique known estimation of the λ-function in the setting of JB∗-triples
required restrictive hypothesis on the elements:

[Tahlawi, Siddiqui, Jamjoom, JMAA’2014]

Let E be a JB∗-triple. Then, for each (complete tripotent) v ∈ ∂e(E1), and
each element x in the closed unit ball of the Peirce-2 subspace E2(v) which is
not Brown-Pedersen quasi-invertible in E we have:

λ(x) ≤ 1
2
(1− αq(x)),

where the symbol αq(x) denotes the distance from x to the set E−1
q of

Brown-Pedersen quasi-invertible elements in E . Consequently, λ(x) = 0
whenever αq(x) = 1.
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In a recent paper, we have thrown some light into the problem of determining
the λ-function on the closed unit ball of a JB∗-triple.

A.M. Peralta (Universidad de Granada) The λ-function on Jordan structures
Universidad de Valencia, December 2014 14 /

15



In a recent paper, we have thrown some light into the problem of determining
the λ-function on the closed unit ball of a JB∗-triple.
If we set mq : E → R+

0 defined by

mq(x) :=


0, if x /∈ E−1

q ;

«ınf{|µ| : µ ∈ σE2(r(x))
(x)}, if x ∈ E−1

q .

[Jamjoom, Peralta, Tahlawi, Siddiqui, QJM’2014]
Let E be a JB∗-triple, then

mq(a) = dist(a,E\E−1
q ),

for every a ∈ E . In particular, mq(a) = dist(a,E\E−1
q ) = (γq(a))

1
2 , for every

a ∈ E−1
q , where γq(a) is the quadratic conorm of a introduced and developed

by Burgos, Kaidi, Morales, Pe. and Ramírez.
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In a recent paper, we have thrown some light into the problem of determining
the λ-function on the closed unit ball of a JB∗-triple.

[Jamjoom, Peralta, Tahlawi, Siddiqui, QJM’2014]

Let a be a BP-quasi-invertible element in the closed unit ball of a JB∗-triple E .
Then for every λ ∈ [ 1

2 ,
1+mq(a)

2 ] there exist e,u in ∂e(E1) satisfying

a = λe + (1− λ)u.

When 1 ≥ λ > 1+mq(a)
2 such a convex decomposition cannot be obtained.

Consequently, λ(a) = 1+mq(a)
2 , for every a ∈ E−1

q ∩ E1.

If ∂e(E1) 6= ∅, then

λ(a) ≤ 1
2
(1− αq(a)),

for every a ∈ E1\E−1
q .
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In a recent paper, we have thrown some light into the problem of determining
the λ-function on the closed unit ball of a JB∗-triple.

[Jamjoom, Peralta, Tahlawi, Siddiqui, QJM’2014]

Every JBW∗-triple W (i.e. a JB∗-triple which is also a dual Banach space)
satisfies the uniform λ-property. Furthermore, the λ-function on W1 is given by
the expression:

λ(a) =


1+mq(a)

2 , if a ∈W1 ∩W−1
q

1
2 (1− αq(a)) = 1

2 , if a ∈W1\W−1
q .
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I finish with a motto:

Richard, many thanks for your huge contribution to our particular heavens.
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