2.6.1 Ecuaciones de la MHD ideal en forma conservativa

\begin{eqnarray*}
\begin{array}{c}
\displaystyle{
\frac{\partial\vec{u}}{\partial t}+\frac{\partial\vec{F}}{\partial x}}=0 \\
\end{array}\end{eqnarray*}



\begin{eqnarray*}
\vec{u}&=&(\rho, \:\:\rho v_x, \:\:\rho v_y, \:\:\rho v_z, \:\...
...onumber
\\
& & (E + p^*)v_x - B_x(B_xv_x + B_yv_y + B_zv_z))^T
\end{eqnarray*}



$\Longrightarrow$ $B_x=constante$

$\Longrightarrow$ $\displaystyle{p^* = p + \frac{1}{2} B^2}$

\fbox{\parbox[b]{5.5in}{
{\bf Descomposici\'on espectral}
\begin{eqnarray*}
\l...
... ,  
\lambda_6=v_x+c_A
  ,  
\lambda_7=v_x+c_{mf}
\end{eqnarray*}}}

\begin{eqnarray*}
\begin {array}{c}
\displaystyle{c_A=\sqrt{\frac{B_x^2}{\rho}}...
...B_x^2}{\rho} }  \right] \right\} ^{\mbox{1/2}} }
\end{array}
\end{eqnarray*}




\begin{eqnarray*}
c_s=\sqrt{\gamma\:\frac{p}{\rho}}
\end{eqnarray*}