2.6.2 Ecuaciones de la RMHD en forma conservativa

  1. Conservación local del número bariónico:

    \begin{eqnarray*}
\nabla_{\mu}J^{\mu}=0
\end{eqnarray*}



  2. Conservación local de la energía-momento:

    \begin{eqnarray*}
\nabla_{\mu}T^{\mu\nu}=0
\end{eqnarray*}



  3. Ecuaciones de Maxwell:

    \begin{eqnarray*}
\nabla_{\mu}H^{\mu\nu}=0
\end{eqnarray*}



$J^{\mu}=\rho u^\mu $
$T^{\mu\nu}=\rho h^*u^\mu u^\nu +p^*g^{\mu \nu}-\mu b^\mu b^\nu $
$H^{\mu\nu}=u^\mu b^\nu -u^\nu b^\mu $
$u^\mu =W(1,v^x,v^y,v^z) $
$b^\mu =(b^0,b^x,b^y,b^z) $
$h^*=1+\varepsilon +p/\rho+\mu \mid b\mid ^2/\rho $
$p^*=p+\mu \mid b\mid ^2/2 $
$u^\mu b_\mu =0 $
$b_\mu b^\mu =\mid b\mid ^2\geq 0 $
$\sigma ^{\mu\nu}=\sigma_0g^{\mu\nu} \mbox{\quad con\quad } \sigma_0\rightarrow\infty $
$EOS: p=(\gamma -1)\rho\epsilon$

\fbox{\parbox[c]{6.cm}{
\begin{displaymath}
\frac{{\textstyle \partial\vec{U}(\v...
...vec{f}(\vec{u
})}}{{\textstyle \partial x}}=\vec{s}(\vec{u})
\end{displaymath}}}

\begin{eqnarray*}
\vec{u} & = & (\rho, v^j, \varepsilon, b^j) \\
\vec{U} & = & ...
... b^jb^x, \\
& & \rho h^*W^2v^x-\rho Wv^x, W(v^jb^x-v^xb^j)) \\
\end{eqnarray*}