4.3 A standard implementation of a HRSC scheme

\begin{eqnarray*}
\frac{\partial{\bf u}}{\partial t} +
\frac{\partial{\bf f}({\bf u})}{\partial x} = 0
\hspace{1cm}
{\bf f}={\bf f}({\bf u})
\end{eqnarray*}



1. Numerical grid:

\begin{figure}\centerline{\psfig{figure=../FIGURES_DATABASE/grid2.eps,width=14cm}}\end{figure}

2. Time update: $\rightarrow$ Conservation form algorithm

\begin{eqnarray*}
{\bf u}_j^{n+1} = {\bf u}_j^n - \frac{\Delta t}{\Delta x}
\left(\hat{\bf f}_{j+\frac{1}{2}} - \hat{\bf f}_{j-\frac{1}{2}}\right)
\end{eqnarray*}



In practice: 2nd or 3rd order time accurate conservative Runge-Kutta schemes (Shu and Osher 1989)

$t^n \rightarrow t^* \rightarrow t^{**} \rightarrow \cdots \rightarrow t^{n+1}$

\begin{eqnarray*}
L\equiv -\frac{\hat{\bf f}_{j+{1\over 2}}- \hat{\bf f}_{j-{1\over 2}}}
{\Delta x}
\end{eqnarray*}



\begin{eqnarray*}
{\bf u}^{(1)}={\bf u}^{n} + \Delta t L({\bf u}^{n})
\end{eqnarray*}



\begin{eqnarray*}
{\bf u}^{(2)}={\bf u}^{n} + \frac{1}{4} \Delta t L({\bf u}^{n})
+ \frac{1}{4} \Delta t L({\bf u}^{(1)})
\end{eqnarray*}



\begin{eqnarray*}
{\bf u}^{n+1}={\bf u}^{n} + \frac{1}{6} \Delta t L({\bf u}^{n...
...lta t L({\bf u}^{(1)})
+ \frac{2}{3} \Delta t L({\bf u}^{(2)})
\end{eqnarray*}



3. Numerical fluxes:

Approximate Riemann solvers: Roe, HLLE, Marquina

Explicit use of the characteristic information of the system

Flux Formula

\begin{eqnarray*}
\widehat{{\bf f}}_{j\pm{1\over 2}} = \frac{1}{2}
&\left( {\b...
...parrow& \\
&\hspace{3.7cm}\textrm{\bf \lq\lq numerical viscosity''}&
\end{eqnarray*}



${\bf u}^L$, ${\bf u}^R$: left and right ``reconstructed" variables
$\lambda$: eigenvalues
$\Delta {\omega}$: jump of characteristic variables
$r$: right-eigenvectors

4. Cell reconstruction:

Piecewise constant (Godunov) or linear (``MUSCL" scheme, van Leer) interpolation procedures of ${\bf u}$ from cell centers to cell interfaces. Higher-order procedures also available: parabolic (PPM, Colella and Woodward) or hyperbolic (PHM, Marquina)

\begin{figure}\centerline{\psfig{figure=../FIGURES_DATABASE/muscl.eps,width=10cm}}\end{figure}

\begin{eqnarray*}
{\bf u}^{L,R}_j = {\bf u}_j + s_j(x_{j\pm\frac{1}{2}}-x_j)
\hspace{2cm}
x_j=\frac{1}{2}(x_{j+\frac{1}{2}}-x_{j-\frac{1}{2}})
\end{eqnarray*}



with

\begin{eqnarray*}
s_j= \left\{ \begin{array}{cc}
\min(\Delta Q^{j+\frac{1}{2}},...
...^{j-\frac{1}{2}})$} \\
0 & \mbox{otherwise}
\end{array}\right.
\end{eqnarray*}



with

\begin{eqnarray*}
\Delta Q^{j+\frac{1}{2}}=\frac{{\bf u}_{j+1}-{\bf u}_j}{x_{j+1}-x_{j}}
\end{eqnarray*}