#procedimiento prcomp :
#autovalores #cargas_factoriales #gráfico de sedimentación #graf.variables individuos en el plano F1F2 #puntuaciones factoriales ( no tipificadas) |
#A.F. por máxima verosimilitud #principales resultados #forma alternativa para principales resultados #gráfico de las variables sobre el plano F1-F2 # puntuaciones factoriales ML |
#A.F. por el método de ejes principales |
library(haven)
coches <- read_sav("http://www.uv.es/mlejarza/actuariales/tam/coches.sav")
#View(coches)
datafact<-coches
#si tuviéramos una primera fila de identificación de cada póliza (variable "numpoliza" de otras versiones)
# la eliminaríamos de la matriz de datos y asignaríamos esta variable como nombre de las
# filas :
#datafact <- (coches[,-1])
#row.names(datafact)<-coches$numpoliza
####CUESTIONES PREVIAS : CORRELACIONES Y VALORES Y VECTORES PROPIOS
library(corrplot)
## corrplot 0.90 loaded
matriz_correlaciones <- cor(datafact, use = "pairwise.complete.obs")
matriz_correlaciones
## sexo edad grupedad naños tipovehiculo
## sexo 1.000000000 -0.09826418 -0.05442932 -0.063553281 -0.028315438
## edad -0.098264182 1.00000000 0.91935195 0.665079187 0.197086162
## grupedad -0.054429324 0.91935195 1.00000000 0.600850571 0.226046472
## naños -0.063553281 0.66507919 0.60085057 1.000000000 0.003944353
## tipovehiculo -0.028315438 0.19708616 0.22604647 0.003944353 1.000000000
## antigvehiculo 0.089155644 -0.36166036 -0.38451376 -0.392211160 -0.048944522
## nsiniest -0.014689769 0.30249288 0.31544855 0.427200477 -0.061216618
## costetotal 0.003035431 0.15573491 0.17193046 0.201950134 0.031804395
## costemedio 0.040873708 0.20963740 0.21344428 0.273662201 0.006823645
## costemanual -0.002592670 -0.06415031 -0.03030591 -0.070379422 -0.030502377
## sinisetropaño -0.024758400 -0.06751720 -0.03147783 -0.057969038 -0.119811863
## edadvehiculo 0.078168779 -0.28609899 -0.34583057 -0.314146682 -0.044253524
## antigcarnet -0.096886356 0.99473353 0.91685257 0.672969530 0.196388393
## kilometros 0.079029442 -0.28281248 -0.34240478 -0.313347992 -0.044477731
## nsinultaño -0.021957312 -0.13448097 -0.10253556 -0.159942628 -0.106505601
## sinisetro -0.008853640 0.37994989 0.38907057 0.557956783 -0.086016916
## sin 0.001232326 0.41722106 0.41606528 0.613683619 -0.090894347
## antigvehiculo nsiniest costetotal costemedio costemanual
## sexo 0.089155644 -0.01468977 0.003035431 0.040873708 -0.00259267
## edad -0.361660364 0.30249288 0.155734909 0.209637402 -0.06415031
## grupedad -0.384513757 0.31544855 0.171930457 0.213444278 -0.03030591
## naños -0.392211160 0.42720048 0.201950134 0.273662201 -0.07037942
## tipovehiculo -0.048944522 -0.06121662 0.031804395 0.006823645 -0.03050238
## antigvehiculo 1.000000000 -0.12203376 0.033519943 -0.018410084 0.03999578
## nsiniest -0.122033756 1.00000000 0.703542595 0.450817887 0.41813702
## costetotal 0.033519943 0.70354260 1.000000000 0.751516509 0.63697576
## costemedio -0.018410084 0.45081789 0.751516509 1.000000000 0.46393010
## costemanual 0.039995776 0.41813702 0.636975764 0.463930102 1.00000000
## sinisetropaño -0.035075912 0.54311772 0.422803920 0.268364913 0.75634942
## edadvehiculo 0.937135920 -0.07643555 0.061535718 0.018994019 0.04543813
## antigcarnet -0.343829922 0.29826434 0.153140525 0.205524837 -0.06493618
## kilometros 0.935171672 -0.07598638 0.060066920 0.016273786 0.04441843
## nsinultaño 0.003902536 0.42132633 0.365055209 0.181366696 0.73993224
## sinisetro -0.180868316 0.88248421 0.627989411 0.581961459 0.37950074
## sin -0.235329508 0.72785639 0.524279399 0.644487985 0.30373669
## sinisetropaño edadvehiculo antigcarnet kilometros
## sexo -0.02475840 0.0781687794 -0.09688636 0.0790294416
## edad -0.06751720 -0.2860989933 0.99473353 -0.2828124829
## grupedad -0.03147783 -0.3458305657 0.91685257 -0.3424047798
## naños -0.05796904 -0.3141466819 0.67296953 -0.3133479923
## tipovehiculo -0.11981186 -0.0442535237 0.19638839 -0.0444777306
## antigvehiculo -0.03507591 0.9371359199 -0.34382992 0.9351716724
## nsiniest 0.54311772 -0.0764355479 0.29826434 -0.0759863818
## costetotal 0.42280392 0.0615357179 0.15314052 0.0600669196
## costemedio 0.26836491 0.0189940187 0.20552484 0.0162737859
## costemanual 0.75634942 0.0454381302 -0.06493618 0.0444184258
## sinisetropaño 1.00000000 -0.0257480150 -0.06842462 -0.0250980644
## edadvehiculo -0.02574801 1.0000000000 -0.27083199 0.9987755681
## antigcarnet -0.06842462 -0.2708319945 1.00000000 -0.2677239662
## kilometros -0.02509806 0.9987755681 -0.26772397 1.0000000000
## nsinultaño 0.95662256 0.0002470139 -0.13488979 0.0006832635
## sinisetro 0.48705722 -0.1166018674 0.37318714 -0.1162790152
## sin 0.39354327 -0.1626636911 0.40633015 -0.1628929505
## nsinultaño sinisetro sin
## sexo -0.0219573124 -0.00885364 0.001232326
## edad -0.1344809741 0.37994989 0.417221060
## grupedad -0.1025355604 0.38907057 0.416065282
## naños -0.1599426282 0.55795678 0.613683619
## tipovehiculo -0.1065056008 -0.08601692 -0.090894347
## antigvehiculo 0.0039025356 -0.18086832 -0.235329508
## nsiniest 0.4213263288 0.88248421 0.727856389
## costetotal 0.3650552085 0.62798941 0.524279399
## costemedio 0.1813666962 0.58196146 0.644487985
## costemanual 0.7399322444 0.37950074 0.303736693
## sinisetropaño 0.9566225567 0.48705722 0.393543273
## edadvehiculo 0.0002470139 -0.11660187 -0.162663691
## antigcarnet -0.1348897941 0.37318714 0.406330146
## kilometros 0.0006832635 -0.11627902 -0.162892951
## nsinultaño 1.0000000000 0.33387356 0.242461606
## sinisetro 0.3338735584 1.00000000 0.920667775
## sin 0.2424616063 0.92066778 1.000000000
#Gráfico de las correlaciones
corrplot(cor(datafact), order = "hclust", tl.col='black', tl.cex=1)
# Se puede conocer la presencia de multicolinealidad al evaluar el
# Determinante de la matriz de correlaciones
# Un determinante bajo, es decir, cercano a 0,
# indica alta multicolinealidad entre las variables.
det(matriz_correlaciones)
## [1] 1.782036e-12
# Obtener los valores propios y los vectores propios de la matriz de correlación
# puede hacerse a partir de la función << eigen >> que nos devuelve (todos los) valores y vectore propios
ev <- eigen(cor(datafact)) # get eigenvalues
ev
## eigen() decomposition
## $values
## [1] 5.714748117 3.933756104 2.280357168 1.249369410 1.031639831 0.945264345
## [7] 0.666634318 0.397978531 0.315105528 0.168275870 0.101870093 0.067738302
## [13] 0.061577897 0.034657105 0.025253181 0.004584621 0.001189581
##
## $vectors
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 0.02953041 -0.04617373 -0.04684445 -0.25817166 -0.52748429 0.803498296
## [2,] -0.28603757 0.25890476 -0.22782042 0.24963907 0.10282571 0.143244583
## [3,] -0.28826431 0.24979685 -0.17784865 0.25790992 0.03024411 0.165983858
## [4,] -0.29109946 0.19143839 -0.15835568 -0.20051016 0.14651262 0.013162343
## [5,] -0.01900949 0.10526202 -0.09630895 0.53128513 -0.55602218 -0.195536431
## [6,] 0.19770294 -0.28052294 -0.41694244 0.07671822 0.08443694 0.042509092
## [7,] -0.32536955 -0.18755022 -0.04082251 -0.11827810 0.08879636 0.007961672
## [8,] -0.26161899 -0.26460408 -0.08426527 -0.03118665 -0.30319816 -0.252969305
## [9,] -0.25191958 -0.18207968 -0.13381392 -0.17538391 -0.37834498 -0.288434707
## [10,] -0.17221801 -0.34691414 0.16818439 0.26114380 -0.11913960 -0.001632044
## [11,] -0.18568608 -0.34056181 0.26227201 0.24395021 0.18766924 0.204608009
## [12,] 0.17152380 -0.27958860 -0.46267493 0.07420969 0.11524612 0.046399751
## [13,] -0.28307815 0.25692015 -0.23676724 0.25445340 0.10914757 0.148632316
## [14,] 0.17108386 -0.27859608 -0.46303921 0.07607924 0.11743335 0.050168553
## [15,] -0.13422190 -0.34057061 0.28998947 0.31465440 0.17799847 0.222129162
## [16,] -0.35746553 -0.14572686 -0.07777262 -0.22401130 0.08366266 -0.010839721
## [17,] -0.35141898 -0.09122833 -0.08752088 -0.27838205 0.04975041 -0.027699838
## [,7] [,8] [,9] [,10] [,11]
## [1,] 0.004750906 0.0237981745 -0.04380849 -0.019327065 0.03315174
## [2,] -0.182434665 0.0393271366 0.06758344 -0.048516001 0.34371447
## [3,] -0.157047138 0.1017723020 0.22869667 0.185812801 -0.63967799
## [4,] 0.133434472 -0.2721914742 -0.76715489 -0.247953190 -0.20704800
## [5,] 0.568164441 -0.1553283546 -0.04296885 -0.012024737 0.01689316
## [6,] 0.008207580 0.0062322886 0.01608193 0.021120015 -0.49066099
## [7,] 0.361029468 0.5451463823 0.02819038 -0.066924426 0.02890022
## [8,] -0.204800941 0.4914164210 -0.16930883 -0.195944463 -0.01104562
## [9,] -0.390885118 -0.3595489513 0.24624902 -0.322948797 -0.04771865
## [10,] -0.314077245 -0.0634018095 -0.40505813 0.646476772 0.07262148
## [11,] 0.087013483 -0.1628081981 0.08621021 -0.200723524 -0.03432759
## [12,] 0.026038904 -0.0594718664 -0.03732161 -0.008632365 0.18992563
## [13,] -0.184694801 0.0358850047 0.02992182 -0.079679947 0.30484011
## [14,] 0.026372081 -0.0571818037 -0.03574187 -0.007587087 0.19731362
## [15,] 0.024528084 -0.1357963057 0.02593418 -0.384478485 -0.06417460
## [16,] 0.305435948 -0.0004508411 0.16393463 0.256191142 0.04478121
## [17,] 0.201685640 -0.4052947382 0.24054867 0.274490552 0.06267967
## [,12] [,13] [,14] [,15] [,16]
## [1,] -0.005922215 0.014097804 -0.0066323958 6.211167e-03 1.289870e-03
## [2,] -0.166360640 0.150707785 0.0183111988 -4.732575e-03 7.035712e-01
## [3,] 0.362721791 -0.253994731 0.0196719658 -1.910640e-02 -5.277299e-05
## [4,] 0.018681593 -0.066912447 -0.0240228444 1.896368e-02 3.405425e-02
## [5,] -0.018547077 0.008015686 0.0009277217 1.454635e-07 -1.416128e-04
## [6,] -0.533902123 0.406006440 0.0084335131 3.276255e-02 2.878848e-02
## [7,] -0.301841460 -0.386928085 0.3937197594 -7.638071e-02 -6.619247e-03
## [8,] 0.367523271 0.425602522 -0.0685966735 1.612442e-01 -3.245519e-03
## [9,] -0.236775823 -0.341250844 -0.0151213286 -7.895100e-02 1.066681e-02
## [10,] -0.150478367 -0.122745318 0.0730969133 -7.934046e-02 -4.389080e-03
## [11,] -0.024563257 -0.106103508 -0.1351154750 7.280778e-01 3.066591e-02
## [12,] 0.260246988 -0.197909879 0.0072843661 -1.589252e-02 -1.979909e-02
## [13,] -0.209275734 0.133190367 -0.0410339060 3.165306e-02 -7.064293e-01
## [14,] 0.278485495 -0.208115148 0.0008851182 -1.081123e-02 8.314445e-03
## [15,] 0.132187508 0.174187834 0.0628034061 -6.150296e-01 -1.371395e-02
## [16,] -0.037574536 0.028556757 -0.7479948144 -1.946164e-01 1.494543e-02
## [17,] 0.203768517 0.371736709 0.4998577285 7.857183e-02 -4.421149e-02
## [,17]
## [1,] 0.0010044789
## [2,] 0.0137144296
## [3,] 0.0046733790
## [4,] -0.0006915200
## [5,] -0.0009647844
## [6,] -0.0114908044
## [7,] -0.0022057919
## [8,] 0.0015832666
## [9,] -0.0030831644
## [10,] -0.0016070636
## [11,] 0.0047221990
## [12,] 0.7127772976
## [13,] -0.0145967160
## [14,] -0.7009478341
## [15,] -0.0021128801
## [16,] 0.0028037778
## [17,] -0.0030208773
#procedimiento prcomp
mod1<-prcomp(datafact,scale. = TRUE) # scale=TRUE PARA A.FACTORIAL SOBRE CORRELACIONES
summary(mod1) # desvtipica, prop.de varianza, y proporc acumulada de var explicada
## Importance of components:
## PC1 PC2 PC3 PC4 PC5 PC6 PC7
## Standard deviation 2.3906 1.9834 1.5101 1.11775 1.01570 0.9722 0.81648
## Proportion of Variance 0.3362 0.2314 0.1341 0.07349 0.06068 0.0556 0.03921
## Cumulative Proportion 0.3362 0.5676 0.7017 0.77519 0.83587 0.8915 0.93069
## PC8 PC9 PC10 PC11 PC12 PC13 PC14
## Standard deviation 0.63086 0.56134 0.4102 0.31917 0.26027 0.24815 0.18616
## Proportion of Variance 0.02341 0.01854 0.0099 0.00599 0.00398 0.00362 0.00204
## Cumulative Proportion 0.95410 0.97264 0.9825 0.98853 0.99251 0.99614 0.99817
## PC15 PC16 PC17
## Standard deviation 0.15891 0.06771 0.03449
## Proportion of Variance 0.00149 0.00027 0.00007
## Cumulative Proportion 0.99966 0.99993 1.00000
# para obtener los valores propios debemos elevar al cuadrado las desv.típicas
vpropios<-(mod1$sdev)^2 # valores propios ( cuadrado de desvtipica)
vpropios
## [1] 5.714748117 3.933756104 2.280357168 1.249369410 1.031639831 0.945264345
## [7] 0.666634318 0.397978531 0.315105528 0.168275870 0.101870093 0.067738302
## [13] 0.061577897 0.034657105 0.025253181 0.004584621 0.001189581
# este procedimeinto de R no da las cargas factoriales para las COMPONENTES PRINCIPALES TIPIFICADAS
# SINO LA MATRIZ T ( TRANSFORMACIÓN Z=TP )
mod1$rotation #matriz T (¡¡ OJO !!)
#
## PC1 PC2 PC3 PC4 PC5
## sexo -0.02953041 0.04617373 0.04684445 0.25817166 0.52748429
## edad 0.28603757 -0.25890476 0.22782042 -0.24963907 -0.10282571
## grupedad 0.28826431 -0.24979685 0.17784865 -0.25790992 -0.03024411
## naños 0.29109946 -0.19143839 0.15835568 0.20051016 -0.14651262
## tipovehiculo 0.01900949 -0.10526202 0.09630895 -0.53128513 0.55602218
## antigvehiculo -0.19770294 0.28052294 0.41694244 -0.07671822 -0.08443694
## nsiniest 0.32536955 0.18755022 0.04082251 0.11827810 -0.08879636
## costetotal 0.26161899 0.26460408 0.08426527 0.03118665 0.30319816
## costemedio 0.25191958 0.18207968 0.13381392 0.17538391 0.37834498
## costemanual 0.17221801 0.34691414 -0.16818439 -0.26114380 0.11913960
## sinisetropaño 0.18568608 0.34056181 -0.26227201 -0.24395021 -0.18766924
## edadvehiculo -0.17152380 0.27958860 0.46267493 -0.07420969 -0.11524612
## antigcarnet 0.28307815 -0.25692015 0.23676724 -0.25445340 -0.10914757
## kilometros -0.17108386 0.27859608 0.46303921 -0.07607924 -0.11743335
## nsinultaño 0.13422190 0.34057061 -0.28998947 -0.31465440 -0.17799847
## sinisetro 0.35746553 0.14572686 0.07777262 0.22401130 -0.08366266
## sin 0.35141898 0.09122833 0.08752088 0.27838205 -0.04975041
## PC6 PC7 PC8 PC9 PC10
## sexo 0.803498296 -0.004750906 -0.0237981745 0.04380849 -0.019327065
## edad 0.143244583 0.182434665 -0.0393271366 -0.06758344 -0.048516001
## grupedad 0.165983858 0.157047138 -0.1017723020 -0.22869667 0.185812801
## naños 0.013162343 -0.133434472 0.2721914742 0.76715489 -0.247953190
## tipovehiculo -0.195536431 -0.568164441 0.1553283546 0.04296885 -0.012024737
## antigvehiculo 0.042509092 -0.008207580 -0.0062322886 -0.01608193 0.021120015
## nsiniest 0.007961672 -0.361029468 -0.5451463823 -0.02819038 -0.066924426
## costetotal -0.252969305 0.204800941 -0.4914164210 0.16930883 -0.195944463
## costemedio -0.288434707 0.390885118 0.3595489513 -0.24624902 -0.322948797
## costemanual -0.001632044 0.314077245 0.0634018095 0.40505813 0.646476772
## sinisetropaño 0.204608009 -0.087013483 0.1628081981 -0.08621021 -0.200723524
## edadvehiculo 0.046399751 -0.026038904 0.0594718664 0.03732161 -0.008632365
## antigcarnet 0.148632316 0.184694801 -0.0358850047 -0.02992182 -0.079679947
## kilometros 0.050168553 -0.026372081 0.0571818037 0.03574187 -0.007587087
## nsinultaño 0.222129162 -0.024528084 0.1357963057 -0.02593418 -0.384478485
## sinisetro -0.010839721 -0.305435948 0.0004508411 -0.16393463 0.256191142
## sin -0.027699838 -0.201685640 0.4052947382 -0.24054867 0.274490552
## PC11 PC12 PC13 PC14 PC15
## sexo 0.03315174 -0.005922215 -0.014097804 0.0066323958 -6.211167e-03
## edad 0.34371447 -0.166360640 -0.150707785 -0.0183111988 4.732575e-03
## grupedad -0.63967799 0.362721791 0.253994731 -0.0196719658 1.910640e-02
## naños -0.20704800 0.018681593 0.066912447 0.0240228444 -1.896368e-02
## tipovehiculo 0.01689316 -0.018547077 -0.008015686 -0.0009277217 -1.454635e-07
## antigvehiculo -0.49066099 -0.533902123 -0.406006440 -0.0084335131 -3.276255e-02
## nsiniest 0.02890022 -0.301841460 0.386928085 -0.3937197594 7.638071e-02
## costetotal -0.01104562 0.367523271 -0.425602522 0.0685966735 -1.612442e-01
## costemedio -0.04771865 -0.236775823 0.341250844 0.0151213286 7.895100e-02
## costemanual 0.07262148 -0.150478367 0.122745318 -0.0730969133 7.934046e-02
## sinisetropaño -0.03432759 -0.024563257 0.106103508 0.1351154750 -7.280778e-01
## edadvehiculo 0.18992563 0.260246988 0.197909879 -0.0072843661 1.589252e-02
## antigcarnet 0.30484011 -0.209275734 -0.133190367 0.0410339060 -3.165306e-02
## kilometros 0.19731362 0.278485495 0.208115148 -0.0008851182 1.081123e-02
## nsinultaño -0.06417460 0.132187508 -0.174187834 -0.0628034061 6.150296e-01
## sinisetro 0.04478121 -0.037574536 -0.028556757 0.7479948144 1.946164e-01
## sin 0.06267967 0.203768517 -0.371736709 -0.4998577285 -7.857183e-02
## PC16 PC17
## sexo 1.289870e-03 -0.0010044789
## edad 7.035712e-01 -0.0137144296
## grupedad -5.277299e-05 -0.0046733790
## naños 3.405425e-02 0.0006915200
## tipovehiculo -1.416128e-04 0.0009647844
## antigvehiculo 2.878848e-02 0.0114908044
## nsiniest -6.619247e-03 0.0022057919
## costetotal -3.245519e-03 -0.0015832666
## costemedio 1.066681e-02 0.0030831644
## costemanual -4.389080e-03 0.0016070636
## sinisetropaño 3.066591e-02 -0.0047221990
## edadvehiculo -1.979909e-02 -0.7127772976
## antigcarnet -7.064293e-01 0.0145967160
## kilometros 8.314445e-03 0.7009478341
## nsinultaño -1.371395e-02 0.0021128801
## sinisetro 1.494543e-02 -0.0028037778
## sin -4.421149e-02 0.0030208773
#puntuaciones
mod1$x
#
## PC1 PC2 PC3 PC4 PC5
## [1,] 0.62892960 -2.532871534 -0.537298517 -1.143296063 0.9176979430
## [2,] -0.04600583 -1.975593165 -1.156131505 -1.005263305 0.0346239114
## [3,] -0.23928876 -1.749544675 -1.113299540 -0.392218845 1.1218893311
## [4,] 0.57503444 -2.466228989 -0.495374488 -1.127778282 0.9122446394
## [5,] -0.10301313 -1.791501254 -1.183422416 -0.367723943 -0.6708650591
## [6,] -0.13826863 -1.829150868 -0.972732040 -0.503523136 1.0669592713
## [7,] -0.18408269 -1.684463220 -1.133947579 0.178061916 0.4001925059
## [8,] -0.08608143 -1.910299432 -1.047857592 -1.022831013 0.0074212438
## [9,] -0.11580998 -1.883022905 -1.071269180 -0.996661421 0.0184417916
## [10,] -0.11626724 -1.769911534 -1.147586669 -0.373569364 -0.6799042740
## [11,] -0.15030088 -1.735616725 -1.159390427 -0.349255882 -0.6717684819
## [12,] -0.26974639 -1.699921846 -1.031007003 -0.405575550 1.1012089538
## [13,] -0.09742931 -1.891817062 -1.017162851 -1.027852908 -0.0003386349
## [14,] -0.14732259 -1.740479341 -1.167379681 -0.348026454 -0.6698386473
## [15,] -0.15608708 -1.726195184 -1.143725491 -0.351835007 -0.6757474815
## [16,] -0.10572073 -1.878305771 -0.994774998 -1.031469751 -0.0059452397
## [17,] -0.09765734 -1.891450038 -1.016521497 -1.027986449 -0.0005338939
## [18,] -0.11086880 -1.869919517 -0.980858866 -1.033736282 -0.0094514796
## [19,] 0.53596671 -2.402581037 -0.389802867 -1.144931709 0.8856929122
## [20,] -0.45814139 -1.434371072 -0.583830279 -1.019422574 -0.0673374796
## [21,] -0.12191660 -1.760722494 -1.132237586 -0.376160012 -0.6838765801
## [22,] -0.17044033 -1.815182047 -1.027361618 -0.981462248 0.0124938787
## [23,] -0.12484192 -1.755955860 -1.124337030 -0.377438512 -0.6858575933
## [24,] -0.25402519 -1.591669231 -1.048702109 0.186590696 0.3839014647
## [25,] 0.09292066 -1.803698304 -0.902604694 0.562545002 0.2042755820
## [26,] -2.00187218 -0.028987559 -1.744839981 0.395665162 -0.2439481967
## [27,] -1.17781929 -0.671807941 -1.034815310 0.407666436 0.5534393824
## [28,] -1.08829207 -0.792636283 -1.107081230 -0.134490699 -0.5119722524
## [29,] -1.17614627 -0.674539792 -1.039301280 0.408354536 0.5545204104
## [30,] -1.17654599 -0.673888364 -1.038222378 0.408180682 0.5542507378
## [31,] -1.12235393 -0.758300668 -1.118779663 -0.110228224 -0.5039021825
## [32,] -2.05670718 0.077639868 -1.558862835 0.874654000 0.7826447927
## [33,] -0.45076118 -1.386465391 -0.359788947 -0.590500718 0.9401980274
## [34,] 0.94744031 -2.469623436 -0.404991841 -0.074246714 -1.7710344491
## [35,] -1.09781039 -0.777133481 -1.081336806 -0.138700908 -0.5184785946
## [36,] -1.09965114 -0.774138507 -1.076340465 -0.139538504 -0.5197650422
## [37,] -0.38339641 -1.471181222 -0.372200309 -1.142342983 -0.1402208458
## [38,] -1.11190984 -0.754168625 -1.043205034 -0.144932999 -0.5281110223
## [39,] -1.10207870 -0.973764016 -0.810906012 -1.426441766 0.8433953618
## [40,] -2.43224403 0.400365879 -1.769329643 0.990514316 0.9197355548
## [41,] 0.30220286 -2.226955655 0.281574418 -2.682291102 0.4156198243
## [42,] -1.19787353 -0.617984922 -0.876848555 0.359600880 0.5085391311
## [43,] -2.50726087 0.592471610 -1.851001833 1.658777851 0.2326045611
## [44,] -0.44709701 -1.371299002 -0.265829433 -0.628266919 0.9112793898
## [45,] -1.15994161 -0.862204134 -0.616743640 -0.948786353 1.8679257066
## [46,] -1.12768264 -0.932045352 -0.741748099 -1.437642603 0.8260435610
## [47,] -1.19205948 -0.644729479 -0.930467124 -0.140766277 -0.5511950449
## [48,] -2.03108500 0.039750223 -1.562089725 0.343532524 -0.2951281693
## [49,] -0.08861593 -1.580291088 -0.217080614 -0.756467671 -1.5090340743
## [50,] -2.09601226 0.215593331 -1.671750823 1.016851252 -0.9747334065
##
##
##
## [2177,] -3.96202031 2.802165952 2.108714350 0.341282358 -0.0106402691
## [2178,] -2.03528022 1.195726077 3.484907788 -0.601282772 -0.6942286510
## [2179,] -1.95091825 1.083311116 3.426609313 -1.145720461 -1.7631660135
## [2180,] -3.26607377 2.139512609 2.568855492 -0.751956709 -1.3129404386
## [2181,] -1.95354356 1.087586221 3.433714729 -1.146887910 -1.7649680484
## PC6 PC7 PC8 PC9 PC10
## [1,] 1.183079773 3.919312e-01 -0.2264418237 7.118150e-02 -1.045506e-01
## [2,] -0.824690472 -3.406247e-02 0.0023611553 3.467988e-01 -2.325707e-01
## [3,] 0.726691721 -1.219568e-01 -0.0240794334 4.580402e-01 -2.454853e-01
## [4,] 1.174717815 3.690317e-01 -0.2144149142 7.948157e-02 -9.743387e-02
## [5,] -0.575179476 6.583534e-01 -0.1768525210 3.012423e-01 -2.194139e-01
## [6,] 0.791514392 -4.864190e-02 -0.0339166563 4.414954e-01 -2.727974e-01
## [7,] 1.014362546 6.308269e-01 -0.2232900225 3.903412e-01 -2.494306e-01
## [8,] -0.813417177 -4.019079e-02 0.0160187832 3.553538e-01 -2.344739e-01
##
##
##
## [2178,] 1.492941690 4.196268e-01 0.1667769415 5.948686e-01 -2.375086e-01
## [2179,] -0.097346986 4.476383e-01 0.2119937079 5.049983e-01 -2.072883e-01
## [2180,] -0.565306951 1.795843e-01 -0.0531376601 -4.108845e-01 6.526624e-02
## [2181,] -0.096577140 4.472337e-01 0.2128711725 5.055468e-01 -2.074047e-01
## PC11 PC12 PC13 PC14 PC15
## [1,] -0.0255665797 0.222635878 0.195536008 0.0546416433 -7.310491e-03
## [2,] 0.3533585504 -0.013965924 0.062508138 0.0533673260 -3.581869e-03
## [3,] 0.3048005685 0.078567434 0.113014188 0.0616852591 -9.263753e-03
## [4,] -0.0291487997 0.283466209 0.238745381 0.0499779078 -2.252649e-03
## [5,] 0.3705754790 0.061514092 0.112117930 0.0536248685 -8.953561e-04
## [6,] 0.4571602311 0.026337212 0.073629135 0.0658156180 -1.339630e-02
## [7,] 0.3973188148 0.060518820 0.089436189 0.0630354896 -1.078359e-02
## [8,] 0.3986091938 0.048941332 0.109939759 0.0523747634 -4.290731e-04
## [9,] 0.3675178091 0.071304323 0.124244831 0.0481297990 2.869567e-03
## [10,] 0.3856760526 0.082643204 0.127988437 0.0534059292 6.099309e-05##
##
#### [2178,] 0.1567791189 0.211614202 0.191508571 0.0066923795 -2.382056e-02
## [2179,] 0.1266818169 0.208314235 0.210788190 -0.0023420998 -1.442408e-02
## [2180,] 0.8250468090 -0.007364540 -0.017212896 -0.0375702166 1.515323e-02
## [2181,] 0.1297096283 0.212587643 0.213981753 -0.0023556821 -1.425818e-02
## PC16 PC17
## [1,] -5.596159e-02 -5.922693e-02
## [2,] -5.373283e-02 -3.049208e-02
## [3,] -4.948464e-02 6.721697e-03
## [4,] 1.713794e-02 -2.347669e-02
## [5,] -5.503344e-02 -5.024020e-02
## [6,] -5.237001e-02 -3.885743e-02
## [7,] 2.193636e-02 -4.226395e-03
## [8,] -5.523877e-02 -4.005420e-02
## [9,] 1.797823e-02 -3.831727e-02
## [10,] -5.505065e-02 -2.921035e-02
##
##
##
## [2179,] -2.011421e-04 2.792149e-04
## [2180,] 2.075369e-02 1.090367e-02
## [2181,] -7.355554e-05 1.103538e-02
# Estas puntuaciones no estan tipificadas podemos comprobarlo calculando
# la desviación típica de alguina de ellas :
sd(mod1$x[,1])
## [1] 2.390554
############################################################################
#########Reducimos la dimensión
#por ejemplo con 5 CP explicaríamos un 83,59% de la variabilidad original
#SI NOS QUEDÁRAMOS CON SÓLO 5 COMP.PRINCIPALES podríamos usar el argumento rank : rank=5
mod2<-prcomp(datafact,scale. = TRUE, rank=5)
summary(mod2)
## Importance of first k=5 (out of 17) components:
## PC1 PC2 PC3 PC4 PC5
## Standard deviation 2.3906 1.9834 1.5101 1.11775 1.01570
## Proportion of Variance 0.3362 0.2314 0.1341 0.07349 0.06068
## Cumulative Proportion 0.3362 0.5676 0.7017 0.77519 0.83587
vpropios2<-(mod2$sdev)^2 # valores propios ( cuadrado de desvtipica)
vpropios2 # salen todos
## [1] 5.714748117 3.933756104 2.280357168 1.249369410 1.031639831 0.945264345
## [7] 0.666634318 0.397978531 0.315105528 0.168275870 0.101870093 0.067738302
## [13] 0.061577897 0.034657105 0.025253181 0.004584621 0.001189581
mod2$rotation # SÓLO SALEN LOS CINCO PRIMERAS COLUMNAS de la matriz T ( ¡¡ OJO !!)
## PC1 PC2 PC3 PC4 PC5
## sexo -0.02953041 0.04617373 0.04684445 0.25817166 0.52748429
## edad 0.28603757 -0.25890476 0.22782042 -0.24963907 -0.10282571
## grupedad 0.28826431 -0.24979685 0.17784865 -0.25790992 -0.03024411
## naños 0.29109946 -0.19143839 0.15835568 0.20051016 -0.14651262
## tipovehiculo 0.01900949 -0.10526202 0.09630895 -0.53128513 0.55602218
## antigvehiculo -0.19770294 0.28052294 0.41694244 -0.07671822 -0.08443694
## nsiniest 0.32536955 0.18755022 0.04082251 0.11827810 -0.08879636
## costetotal 0.26161899 0.26460408 0.08426527 0.03118665 0.30319816
## costemedio 0.25191958 0.18207968 0.13381392 0.17538391 0.37834498
## costemanual 0.17221801 0.34691414 -0.16818439 -0.26114380 0.11913960
## sinisetropaño 0.18568608 0.34056181 -0.26227201 -0.24395021 -0.18766924
## edadvehiculo -0.17152380 0.27958860 0.46267493 -0.07420969 -0.11524612
## antigcarnet 0.28307815 -0.25692015 0.23676724 -0.25445340 -0.10914757
## kilometros -0.17108386 0.27859608 0.46303921 -0.07607924 -0.11743335
## nsinultaño 0.13422190 0.34057061 -0.28998947 -0.31465440 -0.17799847
## sinisetro 0.35746553 0.14572686 0.07777262 0.22401130 -0.08366266
## sin 0.35141898 0.09122833 0.08752088 0.27838205 -0.04975041
mod2$x # puntuaciones de la 5 primera comp.principales sin tipificar (¡¡ OJO !! ) (NO ROTADAS)
## PC1 PC2 PC3 PC4 PC5
## [1,] 0.62892960 -2.532871534 -0.537298517 -1.143296063 0.9176979430
## [2,] -0.04600583 -1.975593165 -1.156131505 -1.005263305 0.0346239114
## [3,] -0.23928876 -1.749544675 -1.113299540 -0.392218845 1.1218893311
## [4,] 0.57503444 -2.466228989 -0.495374488 -1.127778282 0.9122446394
## [5,] -0.10301313 -1.791501254 -1.183422416 -0.367723943 -0.6708650591
## [6,] -0.13826863 -1.829150868 -0.972732040 -0.503523136 1.0669592713
## [7,] -0.18408269 -1.684463220 -1.133947579 0.178061916 0.4001925059
## [8,] -0.08608143 -1.910299432 -1.047857592 -1.022831013 0.0074212438
## [9,] -0.11580998 -1.883022905 -1.071269180 -0.996661421 0.0184417916##
#### [2175,] -3.78540142 2.539447312 1.801121054 -0.162659436 -1.0168903263
## [2176,] -3.14566876 1.964505750 2.347251512 -0.738335511 -1.2623612837
## [2177,] -3.96202031 2.802165952 2.108714350 0.341282358 -0.0106402691
## [2178,] -2.03528022 1.195726077 3.484907788 -0.601282772 -0.6942286510
## [2179,] -1.95091825 1.083311116 3.426609313 -1.145720461 -1.7631660135
## [2180,] -3.26607377 2.139512609 2.568855492 -0.751956709 -1.3129404386
## [2181,] -1.95354356 1.087586221 3.433714729 -1.146887910 -1.7649680484
# PARA INTERPRETARLAS tendremos que obtener
# o bien la matriz factorial para cp tipificadas A multiplicando por la matriz D^1/2
# o bien obteniendo las correlaciones ( que es equivalente)
matriz_correlaciones<-cor(datafact,mod2$x)
matriz_correlaciones
## PC1 PC2 PC3 PC4 PC5
## sexo -0.07059403 0.09157958 0.07073911 0.28857187 0.53576407
## edad 0.68378825 -0.51350390 0.34402823 -0.27903455 -0.10443974
## grupedad 0.68911137 -0.49543955 0.26856661 -0.28827932 -0.03071884
## naños 0.69588897 -0.37969313 0.23913057 0.22412062 -0.14881239
## tipovehiculo 0.04544320 -0.20877351 0.14543472 -0.59384499 0.56474990
## antigvehiculo -0.47261955 0.55638075 0.62961859 -0.08575194 -0.08576232
## nsiniest 0.77781345 0.37198145 0.06164546 0.13220558 -0.09019017
## costetotal 0.62541432 0.52480777 0.12724773 0.03485894 0.30795738
## costemedio 0.60222735 0.36113135 0.20207041 0.19603571 0.38428376
## costemanual 0.41169645 0.68805907 -0.25397275 -0.29189399 0.12100970
## sinisetropaño 0.44389259 0.67546003 -0.39605306 -0.27267582 -0.19061503
## edadvehiculo -0.41003690 0.55452762 0.69867854 -0.08294802 -0.11705511
## antigcarnet 0.67671358 -0.50956770 0.35753869 -0.28441579 -0.11086083
## kilometros -0.40898519 0.55255907 0.69922863 -0.08503772 -0.11927667
## nsinultaño 0.32086470 0.67547750 -0.43790879 -0.35170557 -0.18079246
## sinisetro 0.85454063 0.28903027 0.11744328 0.25038907 -0.08497589
## sin 0.84008601 0.18093952 0.13216398 0.31116207 -0.05053133
#podemos obtener las puntuaciones TIPIFICADAS tipificando las columnas de mod2$x
puntuaciones<-as.array(scale(mod2$x),dimnames=c(F1,F2,F3,F4,F5))
sd(puntuaciones[,1])#lo comprobamos
## [1] 1
#representacion gráfica de variables originales e individuos en el plano
#de las dos primeras componentes principales
biplot(x = mod2, scale = 0, cex = 0.6, col = c("blue4", "brown3"))
#solucion rotada varimax
sol.rotada<-varimax(mod2$rotation)# aplicamos la función varimax a la solución obtenida
sol.rotada
Se obtienen: las cargas factoriales ( no tipificadas) .- aparecen sólo las de mayor relevancia
las sumas de cuadrados de las cargas % explicado y % explicado acumulado para cada factor
la matriz de rotación
## $loadings
##
## Loadings:
## PC1 PC2 PC3 PC4 PC5
## sexo -0.232 0.206 0.497
## edad -0.518
## grupedad -0.493
## naños 0.346 -0.192 -0.212
## tipovehiculo -0.509 0.102 -0.351 0.468
## antigvehiculo 0.551
## nsiniest 0.368 0.142
## costetotal 0.159 0.137 0.438
## costemedio 0.201 0.496
## costemanual 0.465 0.209
## sinisetropaño 0.547
## edadvehiculo 0.583
## antigcarnet -0.522
## kilometros 0.584
## nsinultaño 0.582
## sinisetro 0.447
## sin 0.452 0.114
##
## PC1 PC2 PC3 PC4 PC5
## SS loadings 1.000 1.000 1.000 1.000 1.000
## Proportion Var 0.059 0.059 0.059 0.059 0.059
## Cumulative Var 0.059 0.118 0.176 0.235 0.294
##
## $rotmat
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.6719957 0.2874979 -0.3078408 -0.53188902 0.29680790
## [2,] 0.2246790 0.6270628 0.4966515 0.48629708 0.27048850
## [3,] 0.1391818 -0.4290417 0.7751445 -0.40354226 0.18126330
## [4,] 0.5965457 -0.5584766 -0.1370167 0.55782799 0.04786909
## [5,] -0.3502896 -0.1678224 -0.1973546 0.08118368 0.89643360
sol.rotada$loadings # de nuevo son los coeficientes de T ( CP no tipificadas)
#
##
## Loadings:
## PC1 PC2 PC3 PC4 PC5
## sexo -0.232 0.206 0.497
## edad -0.518
## grupedad -0.493
## naños 0.346 -0.192 -0.212
## tipovehiculo -0.509 0.102 -0.351 0.468
## antigvehiculo 0.551
## nsiniest 0.368 0.142
## costetotal 0.159 0.137 0.438
## costemedio 0.201 0.496
## costemanual 0.465 0.209
## sinisetropaño 0.547
## edadvehiculo 0.583
## antigcarnet -0.522
## kilometros 0.584
## nsinultaño 0.582
## sinisetro 0.447
## sin 0.452 0.114
##
## PC1 PC2 PC3 PC4 PC5
## SS loadings 1.000 1.000 1.000 1.000 1.000
## Proportion Var 0.059 0.059 0.059 0.059 0.059
## Cumulative Var 0.059 0.118 0.176 0.235 0.294
sol.rotada$rotmat # matriz de rotación de la solución
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.6719957 0.2874979 -0.3078408 -0.53188902 0.29680790
## [2,] 0.2246790 0.6270628 0.4966515 0.48629708 0.27048850
## [3,] 0.1391818 -0.4290417 0.7751445 -0.40354226 0.18126330
## [4,] 0.5965457 -0.5584766 -0.1370167 0.55782799 0.04786909
## [5,] -0.3502896 -0.1678224 -0.1973546 0.08118368 0.89643360
#para obtener las puntuaciones rotadas tendremos que multiplicar matricialmente
# la matriz de puntuaciones tipificadas (sin rotar) por la matriza de rotación que antes hay que
# definir como matriz
mat.rotacion<-as.array(sol.rotada$rotmat)
punt.rotadas<-as.array(puntuaciones%*%mat.rotacion,dimnames=C(FR1,FR2,FR3,FR4,FR5))
punt.rotadas
#
# [,1] [,2] [,3] [,4] [,5]
## [1,] -1.086324971 -0.152890549 -1.0292073386 -1.114604617 0.429142553
## [2,] -0.891740371 0.194891796 -0.9657356546 -0.664121185 -0.426409620
## [3,] -0.964307508 -0.255005762 -1.1486646065 -0.184286761 0.571415156
## [4,] -1.079899147 -0.157066130 -0.9849017410 -1.090168202 0.432423545
## [5,] -0.305864585 0.052017518 -0.8673765961 -0.337224419 -1.007004354
## [6,] -0.972431524 -0.243274269 -1.0851353077 -0.323784130 0.536727251
## [7,] -0.390063746 -0.387615262 -1.0797530045 0.051826207 -0.027865537
## [8,] -0.885624187 0.193225152 -0.8812075298 -0.679071187 -0.434244921
## [9,] -0.882882877 0.190028913 -0.8879157315 -0.645571406 -0.426179007
## [10,] -0.303844045 0.051481935 -0.8393957603 -0.342198072 -1.009632216
## [11,] -0.300443726 0.048092899 -0.8370456623 -0.310278499 -1.002375845
## [12,] -0.959659511 -0.256270130 -1.0844191956 -0.195653117 0.565454945
## [13,] -0.883895337 0.192774195 -0.8572387393 -0.683343763 -0.436512601
## [14,] -0.300903118 0.048250464 -0.8432734867 -0.309230620 -1.001872325
## [15,] -0.299563379 0.047871148 -0.8248110334 -0.312472396 -1.003551255
## [16,] -0.882628797 0.192421490 -0.8397629891 -0.686422058 -0.438115249
##
##
#### [2169,] -1.036757097 -0.206131489 1.6759236528 0.932646446 0.773769660
## [2170,] -0.446396768 -0.347778421 1.8808556059 1.208380717 0.175851792
## [2171,] -0.445769961 -0.347938148 1.8895597714 1.206822927 0.175019730
## [2172,] -0.444279346 -0.348317995 1.9102592297 1.203118331 0.173040997
## [2173,] -0.498877120 -0.283378410 2.0786496596 0.499941402 0.006108534
## [2174,] -0.927663116 0.226755099 2.2324971026 0.482657464 -0.237359974
## [2175,] -0.346525723 0.085185639 2.2654206146 0.821104896 -0.811920208
## [2176,] -0.404070323 0.153374811 2.4376689889 0.084936689 -0.986648333
## [2177,] -0.416139876 -0.358439094 2.2545490995 1.174545609 0.148580237
## [2178,] -0.196957941 -0.441720292 2.5589527805 -0.540824850 -0.309778147
## [2179,] -0.113267320 -0.001908495 2.7644522822 -0.928726139 -1.288371640
## [2180,] -0.387492966 0.146425925 2.6222465153 0.084575668 -0.996353754
## [2181,] -0.112867714 -0.002010325 2.7700014197 -0.929719272 -1.288902101
#para obtener la matriz de estructura e intentar explicar la solución rotada
matriz.correlaciones.rotada<-as.array(cor(datafact,punt.rotadas),dimnames=c(FR1,FR2,FR3,FR4,FR5))
matriz.correlaciones.rotada
## [,1] [,2] [,3] [,4] [,5]
## sexo -0.03254353 -0.244293358 -0.023226797 0.25800562 0.51073135
## edad 0.26213895 -0.099652392 -0.140014729 -0.91637692 0.01943613
## grupedad 0.22793327 -0.061627381 -0.204457841 -0.87914370 0.07786720
## naños 0.60143355 -0.240813887 -0.218776881 -0.53833903 0.02451634
## tipovehiculo -0.54820923 0.056623974 -0.035033322 -0.46980063 0.46121301
## antigvehiculo -0.12607308 0.005159270 0.938539293 0.21307244 0.04335903
## nsiniest 0.72530295 0.371729204 -0.007228362 -0.19126749 0.26813101
## costetotal 0.46882024 0.383148098 0.101200823 -0.08434195 0.62837973
## costemedio 0.49629098 0.138921731 0.047899700 -0.08569317 0.66692459
## costemanual 0.17938570 0.801490822 0.034235547 0.06511041 0.35677535
## sinisetropaño 0.29903905 0.905369847 -0.033198467 0.08461576 0.05873865
## edadvehiculo -0.06218808 -0.003954274 0.977676475 0.15003928 0.04603315
## antigcarnet 0.25918868 -0.100931756 -0.123404824 -0.91967496 0.01483628
## kilometros -0.06231548 -0.003582447 0.977526193 0.14695455 0.04382104
## nsinultaño 0.15995761 0.930456208 -0.018871155 0.12366442 0.01966302
## sinisetro 0.83466729 0.250955129 -0.046016744 -0.22858415 0.28891259
## sin 0.82690529 0.132983104 -0.098964494 -0.24270332 0.29183978
#la función princomp sólo se puede usar cuanda haya más individuos que variables # en este caso se puede
mod3 <- princomp(datafact, cor=TRUE)
summary(mod3) # desviación típica y % de varianza explicada
## Importance of components:
## Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
## Standard deviation 2.3905539 1.9833699 1.5100852 1.11775194 1.0156967
## Proportion of Variance 0.3361617 0.2313974 0.1341387 0.07349232 0.0606847
## Cumulative Proportion 0.3361617 0.5675591 0.7016977 0.77519005 0.8358747
## Comp.6 Comp.7 Comp.8 Comp.9 Comp.10
## Standard deviation 0.97224706 0.81647677 0.6308554 0.56134261 0.410214419
## Proportion of Variance 0.05560378 0.03921378 0.0234105 0.01853562 0.009898581
## Cumulative Proportion 0.89147853 0.93069231 0.9541028 0.97263843 0.982537013
## Comp.11 Comp.12 Comp.13 Comp.14
## Standard deviation 0.319170947 0.260265829 0.248148940 0.186164189
## Proportion of Variance 0.005992358 0.003984606 0.003622229 0.002038653
## Cumulative Proportion 0.988529371 0.992513977 0.996136207 0.998174860
## Comp.15 Comp.16 Comp.17
## Standard deviation 0.158912495 0.0677098273 3.449030e-02
## Proportion of Variance 0.001485481 0.0002696836 6.997535e-05
## Cumulative Proportion 0.999660341 0.9999300246 1.000000e+00
autovalores<- mod3$sdev^2
cat("\nAutovalores (Varianzas de las componentes):\n")
##
## Autovalores (Varianzas de las componentes):
autovalores
#
## Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6
## 5.714748117 3.933756104 2.280357168 1.249369410 1.031639831 0.945264345
## Comp.7 Comp.8 Comp.9 Comp.10 Comp.11 Comp.12
## 0.666634318 0.397978531 0.315105528 0.168275870 0.101870093 0.067738302
## Comp.13 Comp.14 Comp.15 Comp.16 Comp.17
## 0.061577897 0.034657105 0.025253181 0.004584621 0.001189581
cat("\nCargas factoriales:\n")
##
##Cargas factoriales:
loadings(mod3) # CARGAS FACTORIALES ,de nuevo de la obtención de COMP Princi NO TIPIFICADAS
##
## Loadings:
## Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9
## sexo 0.258 0.527 0.803
## edad -0.286 -0.259 0.228 -0.250 -0.103 0.143 -0.182
## grupedad -0.288 -0.250 0.178 -0.258 0.166 -0.157 0.102 -0.229
## naños -0.291 -0.191 0.158 0.201 -0.147 0.133 -0.272 0.767
## tipovehiculo -0.105 -0.531 0.556 -0.196 0.568 -0.155
## antigvehiculo 0.198 0.281 0.417
## nsiniest -0.325 0.188 0.118 0.361 0.545
## costetotal -0.262 0.265 0.303 -0.253 -0.205 0.491 0.169
## costemedio -0.252 0.182 0.134 0.175 0.378 -0.288 -0.391 -0.360 -0.246
## costemanual -0.172 0.347 -0.168 -0.261 0.119 -0.314 0.405
## sinisetropaño -0.186 0.341 -0.262 -0.244 -0.188 0.205 -0.163
## edadvehiculo 0.172 0.280 0.463 -0.115
## antigcarnet -0.283 -0.257 0.237 -0.254 -0.109 0.149 -0.185
## kilometros 0.171 0.279 0.463 -0.117
## nsinultaño -0.134 0.341 -0.290 -0.315 -0.178 0.222 -0.136
## sinisetro -0.357 0.146 0.224 0.305 -0.164
## sin -0.351 0.278 0.202 -0.405 -0.241
## Comp.10 Comp.11 Comp.12 Comp.13 Comp.14 Comp.15 Comp.16 Comp.17
## sexo
## edad 0.344 0.166 0.151 0.704
## grupedad -0.186 -0.640 -0.363 -0.254
## naños 0.248 -0.207
## tipovehiculo
## antigvehiculo -0.491 0.534 0.406
## nsiniest 0.302 -0.387 -0.394
## costetotal 0.196 -0.368 0.426 0.161
## costemedio 0.323 0.237 -0.341
## costemanual -0.646 0.150 -0.123
## sinisetropaño 0.201 -0.106 0.135 0.728
## edadvehiculo 0.190 -0.260 -0.198 0.713
## antigcarnet 0.305 0.209 0.133 -0.706
## kilometros 0.197 -0.278 -0.208 -0.701
## nsinultaño 0.384 -0.132 0.174 -0.615
## sinisetro -0.256 0.748 -0.195
## sin -0.274 -0.204 0.372 -0.500
##
## Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9
## SS loadings 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
## Proportion Var 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059
## Cumulative Var 0.059 0.118 0.176 0.235 0.294 0.353 0.412 0.471 0.529
## Comp.10 Comp.11 Comp.12 Comp.13 Comp.14 Comp.15 Comp.16 Comp.17
## SS loadings 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
## Proportion Var 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059
## Cumulative Var 0.588 0.647 0.706 0.765 0.824 0.882 0.941 1.000
plot(mod3,type="lines",main = "Gráfico de sedimentación") # grafico de sedimentación
biplot(mod3,main="variables e individuos en el plano Comp1,Comp2")
print("Puntuaciones factoriales")
## [1] "Puntuaciones factoriales"
mod3$scores # componentes principales ( sin tipificar)
## Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
## [1,] -0.62907383 -2.533452401 -0.537421737 -1.143558257 0.9179084000
## [2,] 0.04601638 -1.976046231 -1.156396643 -1.005493843 0.0346318517
## [3,] 0.23934364 -1.749945900 -1.113554854 -0.392308794 1.1221466157
## [4,] -0.57516631 -2.466794573 -0.495488093 -1.128036917 0.9124538459
## [5,] 0.10303676 -1.791912101 -1.183693812 -0.367808273 -0.6710189096
## [6,] 0.13830034 -1.829570350 -0.972955118 -0.503638609 1.0672039587
## [7,] 0.18412491 -1.684849521 -1.134207629 0.178102751 0.4002842827
## [8,] 0.08610117 -1.910737524 -1.048097898 -1.023065580 0.0074229457
## [9,] 0.11583654 -1.883454742 -1.071514856 -0.996889987 0.0184460209
## [10,] 0.11629390 -1.770317430 -1.147849847 -0.373655035 -0.6800601974
##
#### [2170,] 3.75282658 2.481670917 1.645250659 0.394330223 0.1008593349
## [2171,] 3.75694549 2.488378221 1.656398500 0.392498587 0.0980320835
## [2172,] 3.76674070 2.504328924 1.682909285 0.388142756 0.0913085701
## [2173,] 3.15794625 1.958736218 2.209398849 -0.162087583 -0.1441191821
## [2174,] 3.76029067 2.406474670 1.912673318 -0.813957767 -0.3325046402
## [2175,] 3.78626953 2.540029687 1.801534108 -0.162696739 -1.0171235313
## [2176,] 3.14639016 1.964956273 2.347789811 -0.738504835 -1.2626507829
## [2177,] 3.96292892 2.802808577 2.109197944 0.341360625 -0.0106427092
## [2178,] 2.03574697 1.196000294 3.485706987 -0.601420665 -0.6943878595
## [2179,] 1.95136566 1.083559553 3.427395142 -1.145983211 -1.7635703631
## [2180,] 3.26682278 2.140003267 2.569444612 -0.752129157 -1.3132415372
## [2181,] 1.95399157 1.087835638 3.434502188 -1.147150928 -1.7653728112
## Comp.6 Comp.7 Comp.8 Comp.9 Comp.10
## [1,] 1.183351091 -3.920211e-01 0.2264937539 7.119782e-02 1.045746e-01
## [2,] -0.824879599 3.407028e-02 -0.0023616968 3.468783e-01 2.326240e-01
## [3,] 0.726858374 1.219847e-01 0.0240849556 4.581453e-01 2.455416e-01
## [4,] 1.174987215 -3.691164e-01 0.2144640862 7.949979e-02 9.745622e-02
## [5,] -0.575311383 -6.585044e-01 0.1768930788 3.013114e-01 2.194642e-01
## [6,] 0.791695912 4.865305e-02 0.0339244344 4.415966e-01 2.728599e-01
## [7,] 1.014595172 -6.309715e-01 0.2233412300 3.904307e-01 2.494878e-01
## [8,] -0.813603719 4.020000e-02 -0.0160224568 3.554353e-01 2.345276e-01
## [9,] -0.828876799 5.939711e-02 -0.0198745768 3.586190e-01 2.262902e-01
## [10,] -0.571515506 -6.564703e-01 0.1724117226 3.041159e-01 2.200763e-01
##
#### [2171,] 0.672900558 1.993982e-01 0.0823801920 -2.554604e-01 -1.729206e-01
## [2172,] 0.675772901 2.009081e-01 0.0791063126 -2.534140e-01 -1.724862e-01
## [2173,] 0.994543303 -1.958048e-01 0.1579858322 -3.591990e-01 -3.459587e-02
## [2174,] -1.150303763 9.007330e-01 -0.1851837130 -2.720250e-01 -1.927472e-01
## [2175,] -0.909407090 2.034177e-01 0.0046831462 -3.242415e-01 -2.073970e-01
## [2176,] -0.575755023 -2.126999e-01 0.0878682244 -4.334938e-01 -6.133031e-02
## [2177,] 0.707305683 2.455572e-01 0.0185180384 -2.146907e-01 -1.728143e-01
## [2178,] 1.493284069 -4.197230e-01 -0.1668151887 5.950050e-01 2.375630e-01
## [2179,] -0.097369310 -4.477410e-01 -0.2120423247 5.051141e-01 2.073358e-01
## [2180,] -0.565436594 -1.796254e-01 0.0531498462 -4.109787e-01 -6.528121e-02
## [2181,] -0.096599289 -4.473362e-01 -0.2129199905 5.056627e-01 2.074522e-01
## Comp.11 Comp.12 Comp.13 Comp.14 Comp.15
## [1,] -0.0255724429 -0.222686936 -0.195580850 0.0546541743 7.312167e-03
## [2,] 0.3534395866 0.013969127 -0.062522473 0.0533795648 3.582691e-03
## [3,] 0.3048704689 -0.078585452 -0.113040106 0.0616994054 9.265878e-03
## [4,] -0.0291554844 -0.283531217 -0.238800133 0.0499893693 2.253165e-03
## [5,] 0.3706604636 -0.061528199 -0.112143642 0.0536371664 8.955614e-04
## [6,] 0.4572650723 -0.026343251 -0.073646020 0.0658307116 1.339937e-02
## [7,] 0.3974099325 -0.060532699 -0.089456700 0.0630499456 1.078606e-02
## [8,] 0.3987006074 -0.048952556 -0.109964972 0.0523867746 4.291715e-04
## [9,] 0.3676020925 -0.071320675 -0.124273324 0.0481408367 -2.870225e-03
## [10,] 0.3857645003 -0.082662157 -0.128017788 0.0534181768 -6.100708e-05## [2171,] -0.0244509079 -0.092584305 -0.042228184 -0.0418285246 -1.579709e-02
## [2172,] -0.0131539399 -0.108528677 -0.054143581 -0.0418792011 -1.641608e-02
## [2173,] 0.7019064677 0.282862299 0.244202387 -0.0201602950 1.047382e-02
## [2174,] 0.0268621456 -0.216385865 -0.162149571 -0.0583196501 -3.493708e-02
## [2175,] 0.0091555130 -0.243450865 -0.175198031 -0.0571940134 -3.510376e-02
## [2176,] 0.7537667461 0.172483950 0.139086028 -0.0312150911 -4.823570e-03
## [2177,] 0.1436594518 -0.392095440 -0.265409734 -0.0502763481 -3.283314e-02
## [2178,] 0.1568150733 -0.211662732 -0.191552490 0.0066939142 2.382603e-02
## [2179,] 0.1267108690 -0.208362008 -0.210836531 -0.0023426370 1.442738e-02
## [2180,] 0.8252360182 0.007366228 0.017216843 -0.0375788327 -1.515670e-02
## [2181,] 0.1297393748 -0.212636396 -0.214030826 -0.0023562224 1.426145e-02
## Comp.16 Comp.17
## [1,] -5.597442e-02 5.924052e-02
## [2,] -5.374515e-02 3.049907e-02
## [3,] -4.949598e-02 -6.723239e-03
## [4,] 1.714187e-02 2.348207e-02
## [5,] -5.504606e-02 5.025172e-02
## [6,] -5.238202e-02 3.886634e-02
## [7,] 2.194139e-02 4.227364e-03
## [8,] -5.525144e-02 4.006339e-02
## [9,] 1.798235e-02 3.832606e-02
## [10,] -5.506328e-02 2.921705e-02
##
#### [2171,] -3.657538e-02 2.741726e-02
## [2172,] -3.609935e-02 -1.271471e-02
## [2173,] 2.961558e-02 -4.726068e-02
## [2174,] -4.238112e-02 3.608877e-02
## [2175,] -4.207917e-02 2.647894e-02
## [2176,] -4.963241e-02 -2.370783e-03
## [2177,] 3.075365e-02 3.159899e-02
## [2178,] 7.536653e-02 1.968591e-02
## [2179,] -2.011883e-04 -2.792789e-04
## [2180,] 2.075845e-02 -1.090617e-02
## [2181,] -7.357241e-05 -1.103791e-02
#estas puntuaciones tampoco están tipificadas deberíamos tipificarlas como en el caso anterior
# podemos añadir las 5 primeras COMp.principales a la base de datos
#estas estan sin tipificar
datafact <<- within(datafact, {
pc5 <- mod3$scores[,5]
pc4 <- mod3$scores[,4]
PC3 <- mod3$scores[,3]
PC2 <- mod3$scores[,2]
PC1 <- mod3$scores[,1]
})
#también podríamos añadir las puntuaciones tipificadas
# ( MÁS ARRIBA, LAS HEMOS LLAMADO puntuaciones )
datafact <<- within(datafact, {
F5 <- puntuaciones[,5]
F4 <- puntuaciones[,4]
F3 <- puntuaciones[,3]
F2 <- puntuaciones[,2]
F1 <- puntuaciones[,1]
})
# y las puntuaciones de las componentes rotadas
# ( MÁS ARRIBA, LAS HEMOS LLAMADO punt.rotadas )
datafact <<- within(datafact, {
FR5 <- punt.rotadas[,5]
FR4 <- punt.rotadas[,4]
FR3 <- punt.rotadas[,3]
FR2 <- punt.rotadas[,2]
FR1 <- punt.rotadas[,1]
})
procedimiento: << factanal >>
factanal( formula, factors= numero de factores, rotation= método de rotación, scores= método estimación puntuaciones, data= base de datos)
fa <- factanal(~antigcarnet+costemanual+costemedio+costetotal+edad+edadvehiculo+kilometros+naños+nsiniest+nsinultaño+sinisetropaño,
factors=3, rotation="varimax", scores="regression", data=datafact)
fa #vemos los (principales) resultados
unicidades ( las comunalidades pueden obtenerse restando de 1 ) las cargas factorialessólo las más relevantes
suma de cuadrados , % de varianza explicada y % de varianza explicada acumulada
##
## Call:
## factanal(x = ~antigcarnet + costemanual + costemedio + costetotal + edad + edadvehiculo + kilometros + naños + nsiniest + nsinultaño + sinisetropaño, factors = 3, data = datafact, scores = "regression", rotation = "varimax")
##
## Uniquenesses:
## antigcarnet costemanual costemedio costetotal edad
## 0.005 0.418 0.867 0.766 0.005
## edadvehiculo kilometros naños nsiniest nsinultaño
## 0.005 0.005 0.531 0.590 0.076
## sinisetropaño
## 0.005
##
## Loadings:
## Factor1 Factor2 Factor3
## antigcarnet 0.992
## costemanual 0.756
## costemedio 0.301 0.202
## costetotal 0.455 0.145
## edad 0.990 -0.115
## edadvehiculo -0.176 0.983
## kilometros -0.173 0.983
## naños 0.654 -0.203
## nsiniest 0.578 0.273
## nsinultaño 0.942 -0.185
## sinisetropaño 0.988 -0.122
##
## Factor1 Factor2 Factor3
## SS loadings 3.071 2.646 2.014
## Proportion Var 0.279 0.241 0.183
## Cumulative Var 0.279 0.520 0.703
##
## Test of the hypothesis that 3 factors are sufficient.
## The chi square statistic is 6593.26 on 25 degrees of freedom.
## The p-value is 0
print(fa, digits=2, cutoff=.3, sort=TRUE) #Alternativa para ver los resultados,
##
## Call:
## factanal(x = ~antigcarnet + costemanual + costemedio + costetotal + edad + edadvehiculo + kilometros + naños + nsiniest + nsinultaño + sinisetropaño, factors = 3, data = datafact, scores = "regression", rotation = "varimax")
##
## Uniquenesses:
## antigcarnet costemanual costemedio costetotal edad
## 0.00 0.42 0.87 0.77 0.01
## edadvehiculo kilometros naños nsiniest nsinultaño
## 0.00 0.00 0.53 0.59 0.08
## sinisetropaño
## 0.00
##
## Loadings:
## Factor1 Factor2 Factor3
## costemanual 0.76
## nsiniest 0.58
## nsinultaño 0.94
## sinisetropaño 0.99
## antigcarnet 0.99
## edad 0.99
## naños 0.65
## edadvehiculo 0.98
## kilometros 0.98
## costemedio 0.30
## costetotal 0.45
##
## Factor1 Factor2 Factor3
## SS loadings 3.07 2.65 2.01
## Proportion Var 0.28 0.24 0.18
## Cumulative Var 0.28 0.52 0.70
##
## Test of the hypothesis that 3 factors are sufficient.
## The chi square statistic is 6593.26 on 25 degrees of freedom.
## The p-value is 0## 2 decimales, tres factores,ordenadas las correlaciones
#gráfico de las variables sobre el plano de los dos primeros factores
load <- fa$loadings[,1:2] #cargas de las variables en los dos primeros fractores
plot(load,type="n") # set up plot
text(load,labels=names(datafact),cex=.7) # añadimos nombres de lasvariables
#listamos las puntuaciones factoriales
print("puntuaciones factoriales Max.Veros.")
## [1] "puntuaciones factoriales Max.Veros."
fa$scores
## Factor1 Factor2 Factor3
## 1 -0.2087468101 1.0081370203 -0.7840278702
## 2 -0.2942091745 0.3781910702 -0.8955547372
## 3 -0.3187778595 0.1735203497 -0.8818377618
## 4 -0.2104753981 0.9611922381 -0.7198971564
## 5 -0.2864656377 0.3886654538 -0.7941833655
## 6 -0.2865614419 0.3885388721 -0.7955546433
## 7 -0.2955313206 0.3317947306 -0.8260512731
## 8 -0.2849812144 0.3906765312 -0.7748734338
## 9 -0.2923088674 0.3361461930 -0.7835768505
## 10-0.2833927938 0.3928291049 -0.7542340925
##
##
## 2171 -0.3082738970 -1.1884853741 1.9419044918
## 2172 -0.3059822450 -1.1853740851 1.9714587546
## 2173 -0.1549512883 -0.0827155711 2.1884549520
## 2174 -0.2885238827 -1.1617613773 2.2001068863
## 2175 -0.2879074790 -1.1609245094 2.2080563294
## 2176 -0.1298632469 -0.0041620872 2.4296864607
## 2177 -0.2749960924 -1.1880673081 2.4638771320
## 2178 -0.0177786843 0.7076539717 2.8040430595
## 2179 -0.0094147999 0.7635915505 2.8260951065
## 2180 -0.1162868291 -0.0304019985 2.6940838292
## 2181 -0.0088004509 0.7644256289 2.8340180514
#creamos un nuevo conjunto de datos con las variables a utilizar
datafact2 <- subset(coches, select=c(antigcarnet,costemanual,
costemedio,costetotal,edad,edadvehiculo,kilometros,naños,nsiniest,
nsinultaño,sinisetropaño))
# extraemos 3 factores por el método de ejes princpales
library(psych) # cargamos el paquete necesario para ello
#la función fa de esta librería permite diversos métodos de análisis factorial
#por defecto es el metodo minres, con el argumento fm='pa' aplicaremos ejes principales
# (rotate, por defecto es oblimin, si no queremos ninguna o queremos variamax hay que especificarlo)
ep<-fa(datafact2,nfactors=3,rotate = 'none', fm = 'pa', max.iter = 50)
ep
## Factor Analysis using method = pa
## Call: fa(r = datafact2, nfactors = 3, rotate = "none", max.iter = 50,
## fm = "pa")
## Standardized loadings (pattern matrix) based upon correlation matrix
## PA1 PA2 PA3 h2 u2 com
## antigcarnet 0.38 -0.76 0.34 0.83 0.172 1.9
## costemanual 0.73 0.44 -0.10 0.73 0.267 1.7
## costemedio 0.59 0.02 0.24 0.40 0.600 1.3
## costetotal 0.76 0.15 0.24 0.65 0.352 1.3
## edad 0.38 -0.76 0.33 0.83 0.171 1.9
## edadvehiculo -0.20 0.63 0.73 0.97 0.032 2.1
## kilometros -0.20 0.62 0.73 0.96 0.039 2.1
## naños 0.37 -0.63 0.22 0.59 0.414 1.9
## nsiniest 0.75 -0.03 0.14 0.59 0.410 1.1
## nsinultaño 0.65 0.49 -0.30 0.75 0.247 2.3
## sinisetropaño 0.75 0.44 -0.26 0.82 0.181 1.9
##
## PA1 PA2 PA3
## SS loadings 3.50 2.98 1.63
## Proportion Var 0.32 0.27 0.15
## Cumulative Var 0.32 0.59 0.74
## Proportion Explained 0.43 0.37 0.20
## Cumulative Proportion 0.43 0.80 1.00
##
## Mean item complexity = 1.8
## Test of the hypothesis that 3 factors are sufficient.
##
## The degrees of freedom for the null model are 55 and the objective function was 18.01 with Chi Square of 39176.1
## The degrees of freedom for the model are 25 and the objective function was 8.19
##
## The root mean square of the residuals (RMSR) is 0.08
## The df corrected root mean square of the residuals is 0.11
##
## The harmonic number of observations is 2181 with the empirical chi square 1404.48 with prob < 4.2e-281
## The total number of observations was 2181 with Likelihood Chi Square = 17799.61 with prob < 0
##
## Tucker Lewis Index of factoring reliability = 0
## RMSEA index = 0.571 and the 90 % confidence intervals are 0.564 0.578
## BIC = 17607.42
## Fit based upon off diagonal values = 0.96
## Measures of factor score adequacy
## PA1 PA2 PA3
## Correlation of (regression) scores with factors 0.97 0.98 0.97
## Multiple R square of scores with factors 0.94 0.95 0.94
## Minimum correlation of possible factor scores 0.87 0.90 0.89