CEES

FunGIALabIATA-CSIC

research PUBLICATIONS

 

32. Kinneberg VB, Lu DS, Peris D, Ravinet M, Skrede I (BioRxiv). Introgression between highly divergent fungal sister species. [Pubmed][pdf]

 

31. Peris D, Ubbelohde EJ, Kuang MC, Kominek J, Langdon QK, Adams M, Koshalek JA, Hulfachor AB, Opulente DA, Hall DJ, Hyma K, Fay JC, Leducq JB, Charron G, Landry CR, Libkind D, Gonçalves C, Gonçalves P, Sampaio JP, Wang QM, Bai FY, Wrobel RL, Hittinger CT (2023). Macroevolutionary diversity of traits and genomes in the model yeast genus Saccharomyces. [Data][Pubmed][pdf][SlideShare IATA][SlideShare ISSY34][SlideShare EMBOEUK19][OSLOinterv][Press]

 

30. Sorribes-Dauden R, Jordá T, Peris D, Martínez-Pastor MT, Puig S (2022). Adaptation of Saccharomyces species to high-iron conditions. International Journal of Molecular Sciences 23: 13965. [Pubmed] [pdf]

 

29. Peris D, Lu DS, Kinneberg VB, Methlie IS, Dahl MS, James TY , Kauserud H, Skrede I (2022). Large-scale fungal strain sequencing unravels the molecular diversity in mating loci maintained by long-term balancing selection. Plos Genetics 18: e1010097 [Data] [Pubmed] [pdf] [SlideShare] [Press]

 

28. Bendixsen DP, Peris D, Stelkens R (2021). Patterns of genomics instability in interspecific yeast hybrids with diverse ancestries. Frontiers in Fungal Biology 2: 52 [Data] [Pubmed] [pdf]

 

27. Sorribes-Daudén R, Peris D, Martínez-Pastor MT, Puig S (2020). Structure, regulation and function of the vacuolar Ccc1/VIT1 transporter family in iron detoxification. Computational and Structural Biology 18:3712-3722 [Data] [Pubmed] [pdf]

 

26. Flores MG, Rodríguez ME, Peris D, Barrio E, Querol A, Lopes CA (2020). Human-associated migration of Holarctic Saccharomyces uvarum strains to Patagonia. Fungal Ecology 48:100990 [Pubmed] [pdf]

 

25. Peris D, Alexander WG, Fisher KJ, Moriarty RV, Basuino MG, Ubbelohde EJ, Wrobel RL, Hittinger CT (2020). Synthetic hybrids of six species. Nat Commun 11(1):2085 [Pubmed] [pdf] [Press] [Blog] [SlideShare 1][SlideShare 2][SlideShare 3][SlideShare EMBOEUK19] [Data][SlideShare 5]

 

24. Langdon QK, Peris D, Eizaguirre JI, Opulente DA, Buh KV, Sylvester K, Jarzyna M, Rodríguez ME, Lopes CA, Libkind D, Hittinger CT (2020). Postglacial migration shaped the genomic diversity and global distribution of the wild ancestor of lager-brewing hybrids. PloS Genetics 16(4):e1008680 [Pubmed] [pdf] [Press][OSLOinterv]

 

23. Libkind D, Peris D, Cubillos FA, Steenwyk JL, Opulente DA, Langdon QK, Bellora N, Rokas A, Hittinger CT (2020). Into the wild: new yeast genomes from natural environments and new tools for their analysis. FEMS Yeast Research 20(2): foaa008 [Pubmed] [pdf]

 

22. Langdon QK, Peris D, Baker ECP, Opulente DA, Nguyen HV, Bond U, Gonçalves P, Sampaio JP, Libkind D, Hittinger CT (2019). Fermentation innovation through complex hybridization of wild and domesticated yeasts. Nat Ecol & Evol 3(11):1576-1586 [Pubmed] [pdf] [Press][SlideShare 1][OSLOinterv]

 

21. Perea-Sanz L, Peris D, Belloch C, Flores M (2019). Debaryomyces hansenii metabolism of sulfur amino acids as precursos of volatile sulfur compounds of interest in meat products. J Agric Food Chem 67(33): 9335-9343 [Pubmed] [pdf]

 

20. Baker EC, Peris D, Moriarty RV, Li XC, Fay JC, Hittinger CT (2019). Mitochondrial DNA and thermal adaptation in industrial and synthetic lager-brewing yeast hybrids. Science Advances 4(1):eaav1869 [Pubmed][pdf][SlideShare][MTA & Patents][Press]

 

19. Li XC, Peris D, Hittinger CT, Sia Elaine A, Fay JC (2019). Mitochondria-encoded genes contribute to the evolution of heat and cold tolerance among Saccharomyces species. Science Advances 4(1):eaav1848 [Pubmed][pdf][Press]

 

18. Langdon Q, Peris D, Kyle B, Hittinger CT (2018). sppIDer: a species identification tool to investigate hybrid genomes using high-throughput sequencing data. Mol Biol and Evol 35(11):2835-2849. [Pubmed][pdf]

 

17. Eizaguirre JI, Peris D, Rodríguez ME, Lopes CA, De Los Ríos P, Hittinger CT, Libkind D (2018). Phylogeography of the wild Lager-brewing close relative (Saccharomyces eubayanus) in Patagonia. Environmental Microbiol 20(10):3732-3743. [Pubmed] [pdf]

 

16. Higgins DA, Young MK, Tremaine M, Qin L, Sardi M, Fletcher JM, Agnew M, Lisa L, Dickinson Q, Peris D, Wrobel RL, Hittinger CT, Gasch AP, Singer SW, Simmons BA, Landick R, Thelen MP, Sato TK (2018). Natural variation in multidrug efflux pump SGE1 underlies Ionic Liquid tolerance in yeast. Genetics 201:219-234. [Pubmed] [pdf] [Press]

 

15. Gonçalves C, Wisecaver JH, Kominek J, Oom MS, Leandro MJ, Shen XX, Opulente DA, Zhou X, Peris D, Kurtzman CP, Hittinger CT, Rokas A, Gonçalves P (2018). Evidence for loss and reacquisition of alcoholic fermentation in a fructophilic yeast lineage. eLife 7:e33034 [Pubmed] [pdf]

 

14. Peris D, Pérez-Torrado R, Hittinger CT, Barrio E, Querol A (2018). On the origins and industrial applications of Saccharomyces cerevisiae x Saccharomyces kudriavzevii hybrids. Yeast 35(1):51-69 (2nd most accessed paper 2018). [Pubmed] [pdf] [Press] [SlideShare] [Open Access]

 

13. Peris D, Moriarty RV, Alexander WG, Baker E, Sylvester K, Sardi M, Langdon QK, Libkind D, Wang QM, Bai FY, Leducq JB, Charron G, Landry CR, Sampaio JP, Gonçalves P, Hyma KE, Fay JC, Sato TK, Hittinger CT (2017). Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production. Biotechnol Biofuel 10:78 [Pubmed] [pdf] [Press] [SlideShare 1] [SlideShare 2] [SlideShare 3]

 

12. Peris D, Arias A, Orlic S, Belloch C, Pérez-Través L, Querol A, Barrio E (2017). Mitochondrial introgression suggests extensive ancestral hybridization events among Saccharomyces species. Mol Phylogenet Evol 108:49-60 [Pubmed] [pdf]

 

11. Zhou X, Peris D, Kominek J, Kurtzman CP, Hittinger CT, Rokas A (2016). in silico Whole Genome & Analyzer (iWGS): a computational pipeline to guide the design and analysis of de novo genome sequencing studies. G3: Genes / Genomes / Genetics 6:3655-3670 [Pubmed] [pdf]

 

10. Peris D, Langdon QK, Moriarty RV, Sylvester K, Bontrager M, Charron G, Leducq JB, Landry CR, Libkind D, Hittinger CT (2016). Complex ancestries of lager-brewing hybrids were shaped by standing variation in the wild yeast Saccharomyces eubayanus. PLOS Genetics 12:e1006155 (Cover) [Pubmed] [pdf] [Press] [SlideShare]

 

9. McIlwain SJ, Peris D, Sardi M, Moskvin OV, Zhan F, Myers K, Riley NM, Buzzell A, Parreiras LS, Ong IM, Landick R, Coon JJ, Gasch AP, Sato TK, Hittinger CT (2016). Genome sequence and annotation of a stress-tolerant, wild-derived strain of Saccharomyces cerevisiae used in biofuels research. G3: Genes / Genomes / Genetics 6:1757-1766 [Pubmed] [pdf]

 

8. Peris D, Pérez-Través L, Belloch C, Querol A (2016). Enological characterization of Spanish Saccharomyces kudriavzevii strains, one of the closest relatives to the parental strains of winemaking and brewing S. cerevisiae x S. kudriavzevii hybrids. Food Microbiol 53:31-40 [Pubmed] [pdf] [SlideShare] [Open Access]

 

7. Alexander WG, Peris D, Pfannenstiel BT, Opulente DA, Kuang M, Hittinger CT (2015). Efficient engineering of marker-free synthetic Saccharomyces allotetraploids. Fungal Gen and Biol 89:10-17 [Pubmed] [pdf] [Press]

 

6. Baker EC, Wang B, Bellora N, Peris D, Hulfachor A, Koshalek J, Adams M, Libkind D, Hittinger C (2015). The genome sequence of Saccharomyces eubayanus and the domestication of lager-brewing yeasts. Mol Biol and Evol 32:2818-2831 (2018 Citation Classics) [Pubmed] [pdf] [Press] [Metrics]

 

5. Peris D, Sylvester K, Libkind D, Gonçalves P, Sampaio JP, Alexander WG, Hittinger CT (2014). Population structure and reticulate evolution of Saccharomyces eubayanus and its Lager-Brewing hybrids. Mol Ecol 23:2031-2045 (Cover) [Pubmed] [pdf] [Press] [Data] [MTA & Patents] [Documentary: Henineken H-41 Patagonian Wild Yeast] [SlideShare]

 

4. Peris D, Lopes CA, Arias A, Barrio E (2012). Reconstruction of the Evolutionary History of Saccharomyces cerevisiae x S. kudriavzevii Hybrids based on Multilocus Sequence Analysis. PloS One 7(9):e45527 [Pubmed] [pdf] [Metrics]

 

3. Peris D, Lopes CA, Belloch C, Querol A, Barrio E (2012). Comparative genomics among Saccharomyces cerevisiae x Saccharomyces kudriavzevii natural hybrid strains isolated from wine and beer reveals different origins. BMC Genomics 13:407 [Pubmed] [pdf] [Metrics] [Open Access]

 

2. Peris D, Belloch C, Lopandić K, Álvarez-Pérez JM, Querol A, Barrio E (2012). The molecular characterization of new types of Saccharomyces cerevisiae x S. kudriavzevii hybrid yeasts unveils a high genetic diversity. Yeast 29(2):81-91 [Pubmed] [pdf] [Metrics] [Open Access]

 

1. El-Sharoud WM, Belloch C, Peris D, Querol A. (2009). Molecular identification of yeasts associated with traditional Egyptian dairy products. J Food Sci. 74(7):M341-M346. [Pubmed] [pdf] [Metrics]

 

press

Large-scale fungal strain sequencing unravels the molecular diversity in mating loci maintained by long-term balancing selection

Synthetic hybrids of six species

Postglacial migration shaped the genomic diversity and global distribution of the wild ancestor of lager-brewing hybrids

Fermentation innovation through complex hybridization of wild and domesticated yeastss

MITOGRESSION

Mitochondrial DNA and thermal adaptation in industrial and synthetic lager-brewing yeast hybrids & Mitochondria-encoded genes contribute to the evolution of heat and cold tolerance among Saccharomyces species

On the origins and industrial applications of Saccharomyces cerevisiae x Saccharomyces kudriavzevii hybrids

Natural variation in multidrug efflux pump SGE1 underlies Ionic Liquid tolerance in yeast.

Hybridization and directed evolution of diverse Saccharomyces species for cellulosic biofuel production.

Complex ancestries of lager-brewing hybrids were shaped by standing variation in the wild yeast Saccharomyces eubayanus.

 

Efficient engineering of marker-free synthetic Saccharomyces allotetraploids

 

"The genome sequence of Saccharomyces eubayanus and the domestication of lager-brewing yeasts"

"Population structure and reticulate evolution of Saccharomyces eubayanus and its lager-brewing hybrids"

 

 

associated data

Peris et al. 2014 Molecular Ecology

 

Input and output data: http://datadryad.org/resource/doi:10.5061/dryad.153b8

 

Design downloaded from free website templates.