PASADO, PRESENTE Y FUTURO

DEL DRAGÓN DE MANDELBROT

 

LAS MATEMÁTICAS EN GRECIA

“Los griegos tomaron elementos de las matemáticas de los babilonios y de los egipcios. La innovación más importante fue la invención de las matemáticas abstractas basadas en una estructura lógica de definiciones, axiomas y demostraciones. Según los cronistas griegos, este avance comenzó en el siglo VI a.C. con Tales de Mileto y Pitágoras de Samos. Este último enseñó la importancia del estudio de los números para poder entender el mundo. Algunos de sus discípulos hicieron importantes descubrimientos sobre la teoría de números y la geometría, que se atribuyen al propio Pitágoras.

En el siglo V a.C., algunos de los más importantes geómetras fueron el filósofo atomista Demócrito de Abdera, que encontró la fórmula correcta para calcular el volumen de una pirámide, e Hipócrates de Cos, que descubrió que el área de figuras geométricas en forma de media luna limitadas por arcos circulares son iguales a las de ciertos triángulos. Este descubrimiento está relacionado con el famoso problema de la cuadratura del círculo (construir un cuadrado de área igual a un círculo dado). Otros dos problemas bastante conocidos que tuvieron su origen en el mismo periodo son la trisección de un ángulo y la duplicación del cubo (construir un cubo cuyo volumen es dos veces el de un cubo dado). Todos estos problemas fueron resueltos, mediante diversos métodos, utilizando instrumentos más complicados que la regla y el compás. Sin embargo, hubo que esperar hasta el siglo XIX para demostrar finalmente que estos tres problemas no se pueden resolver utilizando solamente estos dos instrumentos básicos.”(3)

 

Los griegos ya sabían que la tierra era redonda gracias a (Pincha en las siguientes imágenes):

                                                   

 

Otro destacado griego fue Eratóstenes, si quieres conocer uno de sus experimentos, puedes conocer “pinchando” los siguientes archivos audiovisuales, que explican como calculó la longitud de la circunferencia de la tierra, gracias a la observación del Sol en Siena y Alejandría

Pincha con el botón derecho de tu ratón y escucha la siguiente secuencia:

                                 

Y ahora observa

                               

 

“A finales del siglo V a.C., un matemático griego descubrió que no existe una unidad de longitud capaz de medir el lado y la diagonal de un cuadrado, es decir, una de las dos cantidades es inconmensurable (irracional). Esto significa que no existen dos números naturales m y n cuyo cociente sea igual a la proporción entre el lado y la diagonal. Dado que los griegos sólo utilizaban los números naturales (1, 2, 3…), no pudieron expresar numéricamente este cociente entre la diagonal y el lado de un cuadrado (este número, Ö2,  es lo que hoy se denomina número irracional). Debido a este descubrimiento se abandonó la teoría pitagórica de la proporción, basada en números, y se tuvo que crear una nueva teoría no numérica. Ésta fue introducida en el siglo IV a.C. por el matemático Eudoxo de Cnido, y la solución se puede encontrar en los Elementos de Euclides. Eudoxo, además, descubrió un método para demostrar rigurosamente supuestos sobre áreas y volúmenes mediante aproximaciones sucesivas.

Euclides, matemático y profesor que trabajaba en el famoso Museo de Alejandría, también escribió tratados sobre óptica, astronomía y música. Los trece libros que componen sus Elementos contienen la mayor parte del conocimiento matemático existente a finales del siglo IV a.C., en áreas tan diversas como la geometría de polígonos y del círculo, la teoría de números, la teoría de los inconmensurables, la geometría del espacio y la teoría elemental de áreas y volúmenes.

El siglo posterior a Euclides estuvo marcado por un gran auge de las matemáticas, como se puede comprobar en los trabajos de Arquímedes de Siracusa y de un joven contemporáneo, Apolonio de Perga. Arquímedes utilizó un nuevo método teórico, basado en la ponderación de secciones infinitamente pequeñas de figuras geométricas, para calcular las áreas y volúmenes de figuras obtenidas a partir de las cónicas. Éstas habían sido descubiertas por un alumno de Eudoxo llamado Menaechmo, y aparecían como tema de estudio en un tratado de Euclides; sin embargo, la primera referencia escrita conocida aparece en los trabajos de Arquímedes. También investigó los centros de gravedad y el equilibrio de ciertos cuerpos sólidos flotando en agua. Casi todo su trabajo es parte de la tradición que llevó, en el siglo XVII, al desarrollo del cálculo.”(3)

                       

                   

 

“Apolonio, escribió un tratado en ocho tomos sobre las cónicas, y estableció sus nombres: elipse, parábola e hipérbola. Este tratado sirvió de base para el estudio de la geometría de estas curvas hasta los tiempos del filósofo y científico francés René Descartes en el siglo XVII.

Después de Euclides, Arquímedes y Apolonio, Grecia no tuvo ningún geómetra de la misma talla. Los escritos de Herón de Alejandría en el siglo I d.C. muestran cómo elementos de la tradición aritmética y de medidas de los babilonios y egipcios convivieron con las construcciones lógicas de los grandes geómetras. Los libros de Diofante de Alejandría en el siglo III d.C. continuaron con esta misma tradición, aunque ocupándose de problemas más complejos. En ellos Diofante encuentra las soluciones enteras para aquellos problemas que generan ecuaciones con varias incógnitas. Actualmente, estas ecuaciones se denominan diofánticas y se estudian en el análisis diofántico.”(3)

 

De Grecia te destacaré las matemáticas aplicadas que en paralelo con los estudios sobre matemáticas puras hasta ahora mencionados, se llevaron a cabo. Estas consistieron en:

 “estudios de óptica, mecánica y astronomía. Muchos de los grandes matemáticos, como Euclides y Arquímedes, también escribieron sobre temas astronómicos. A principios del siglo II a.C., los astrónomos griegos adoptaron el sistema babilónico de almacenamiento de fracciones y, casi al mismo tiempo, compilaron tablas de las cuerdas de un círculo. Para un círculo de radio determinado, estas tablas daban la longitud de las cuerdas en función del ángulo central correspondiente, que crecía con un determinado incremento. Eran similares a las modernas tablas del seno y coseno, y marcaron el comienzo de la trigonometría. En la primera versión de estas tablas —las de Hiparco, hacia el 150 a.C.— los arcos crecían con un incremento de 7’5 °, de 0° a 180°. En tiempos del astrónomo Tolomeo, en el siglo II d.C., la maestría griega en el manejo de los números había avanzado hasta tal punto que Tolomeo fue capaz de incluir en su Almagesto una tabla de las cuerdas de un círculo con incrementos de 1/2° que, aunque expresadas en forma sexagesimal, eran correctas hasta la quinta cifra decimal.

Mientras tanto, se desarrollaron otros métodos para resolver problemas con triángulos planos y se introdujo un teorema —que recibe el nombre del astrónomo Menelao de Alejandría— para calcular las longitudes de arcos de esfera en función de otros arcos. Estos avances dieron a los astrónomos las herramientas necesarias para resolver problemas de astronomía esférica, y para desarrollar el sistema astronómico que sería utilizado hasta la época del astrónomo alemán Johannes Kepler.”(3)

 

Una vez conoces esto, mira en las siguientes páginas y transladate a la Grecia antigua:

-         Grecia y Roma

 -   Archimedes of Syracuse

 

En estas páginas habrás obtenido también información sobre Roma, por cierto, sabias qué “Hipatía (370-415) fue una profesora universitaria, denunciada por las autoridades de la Iglesia y fue lapidada por los cristianos”(5).

                                              

Si quieres saber algo más sobre ella, y sobre otras mujeres matemáticas,  entra en:

-         Biographies of Women Mathematicians

-        Distinguished Women of Past and Present

-         Contributions of 20Th Century Women to Physics

 

Llevas en esta pagina                    Esta pagina ha sido visitada

Pincha aquí para Cerrar la ventana 

[ INTRODUCCIÓN | LAS MATEMÁTICAS EN LA ANTIGÜEDAD | LAS MATEMÁTICAS EN GRECIA | LAS MATEMÁTICAS EN LA EDAD MEDIA | LAS MATEMÁTICAS EN EL MUNDO ISLÁMICO | LAS MATEMÁTICAS DURANTE EL RENACIMIENTO | AVANCES DEL SIGLO XVII | SITUACIÓN EN EL SIGLO XVIII | LAS MATEMÁTICAS EN EL SIGLO XIX | LAS MATEMÁTICAS ACTUALES | LINKS INTERESANTES | EJE CRONOLÓGICO | ÍNDICE BIBLIOGRÁFICO | BIBLIOGRAFÍA | VOLVER A LA PÁGINA PRINCIPAL ]