Research Group: Statistical Physics and Thermodynamics of Transport Processes (FET-TRANS)

Project CIAICO/2022/247

Funded by the Generalitat Valenciana

Objective

We employ biomimetic nanopores to achieve a qualitative understanding of the instructive bioelectric signaling in multicellular ensembles.

To this end, we will study both theoretically and experimentally the ionic transport through conical nanopores with applications in sensing and actuating such as nanofluidic memristors that can be used as a simplified model of biological synapsis.

Our methods are based in experiments and theoretical simulations. We want to acquire a better understanding of the basic physico-chemical aspects of the transport properties of nanopores.

Publications

  1. P. Ramirez, S. Portillo, J. Cervera, S. Nasir, M. Ali, W. Ensinger, S. Mafe, Neuromorphic Responses of Nanofluidic Memristors in Symmetric and Asymmetric Ionic Solutions, J. Chem. Phys. 160 (2024) 044701. American Institute of Physics.
  2. P. Ramirez, S. Portillo, J. Cervera, S. Mafe, J. Bisquert, Synaptical Tunability of Multipore Nanofluidic Memristors, Proceedings of Neuronics Conference. València, Spain, 2024 Feb. 21st - 23rd.
  3. P. Ramirez, J. Cervera, S. Nasir, M. Ali, W. Ensinger, S. Mafe, Electrochemical impedance spectroscopy of membranes with nanofluidic conical pores, J. Colloid. Interface Sci. 655 (2024) 876-885. Elsevier.
  4. P. Ramirez, S. Portillo, J. Cervera, J. Bisquert, S. Mafe, Memristive arrangements of nanofluidic pores, Phys. Rev. E 109 (2024) 044803. American Physical Society.
  5. P. Ramirez, J. Cervera, S. Nasir, M. Ali, W. Ensinger, S. Mafe, Memristive switching of nanofluidic diodes by ionic concentration gradients , Col. Surf. A-Physicochem. Eng. Aspects 698 (2024) 134525. Elsevier.