4.1.2 Exact solution of a Riemann problem

\begin{figure}\centerline{\psfig{figure=../FIGURES_DATABASE/godunov.eps,width=6cm}}\end{figure}

SRH equations (Cartesian coordinates, planar symmetry):

\begin{eqnarray*}
\frac{\partial(\rho W)}{\partial t} +
\frac{\partial(\rho W v...
...)}{\partial t} +
\frac{\partial(\rho h W^2 v)}{\partial x} &=& 0
\end{eqnarray*}



self-similarity ( $\displaystyle\frac{\partial}{\partial x}=\frac{1}{t}\frac{d}{d\xi},
\frac{\partial}{\partial t} = -\frac{\xi}{t}\frac{d}{d\xi}$) and some algebra lead to

\begin{eqnarray*}
(v-\xi)\frac{d\rho}{d\xi} + (1-v\xi)\rho W^2 \frac{dv}{d\xi} &...
...-\xi)W^2 \rho h \frac{dv}{d\xi} + (1-v\xi) \frac{dp}{d\xi} &=& 0
\end{eqnarray*}



A self-similar flow is isentropic: $\displaystyle\frac{dp}{d\xi} =
c_s^2 h \frac{d\rho}{d\xi}$

\begin{eqnarray*}
(v-\xi)\frac{d\rho}{d\xi} + (1-v\xi)\rho W^2 \frac{dv}{d\xi} &...
...ho W^2 \frac{dv}{d\xi} + (1-v\xi) c_s^2 \frac{d\rho}{d\xi} &=& 0
\end{eqnarray*}



whose solution is $\begin{array}{\vert c\vert}\hline
\displaystyle \xi=\frac{v\mp c_s}{1\mp v c_s} \hspace{1cm} (\dagger)
 \hline
\end{array}$

$v_1=0 \rightarrow \xi_1=-c_{s_1}$

In Eq. ($\ast$) $\displaystyle\rightarrow W^2 dv = -\frac{c_s}{\rho} d\rho$

\begin{eqnarray*}
\frac{1}{2}\left[\ln\frac{1+v}{1-v}\right]_{v_1}^{v} =
-\displaystyle\int_{\rho_1}^{\rho}\frac{c_s}{\rho}d\rho
\end{eqnarray*}



Adiabatic flow: $p=K\rho^{\gamma}$, $\displaystyle c_s^2=\frac{\gamma (\gamma-1) p}
{\rho(\gamma-1) + \gamma p}$

Hence, two arbitrary states are related according to: $\displaystyle
\rho=\rho_1\left[\frac{c_s^2(\gamma-1-c^2_{s_1})}{c^2_{s_1} (\gamma-1-c^2_{s})}
\right]^{\frac{1}{\gamma-1}}$

\begin{eqnarray*}
\rightarrow \frac{1}{2}\left[\ln\frac{1+v}{1-v}\right]_{v_1}^{...
...mma,c_{s_1},v_1,v)
\hspace{1cm} (\ddagger)
 \hline
\end{array}\end{eqnarray*}



Solving Eqs. ($\dagger$) and ($\ddagger$) allows to obtain $v(x,t)$ and $c_s(x,t)$ in state 2, and hence $\rho$ and $p$

Finally, the continuity of the flow guarantees: $v_3=v(\xi_2), p_3=p(\xi_2)$ and $\rho_3=\rho(\xi_2)$