foto Rosario Gil Garcia
ROSARIO GIL GARCIA
PDI-Catedratic/a d'Universitat
Coordinador/a de Programa de Doctorat
Knowledge area: GENETICS
Department: Genetics
Grup de Genètica Evolutiva, despatx 3.2.3 Institut de Biologia Integrativa de Sistemes (I2SysBio), Parc Científic de la Universitat de València, edifici 4 C/ Catedràtic Agustín Escardino, 9 46980 Paterna (València)
(9635) 43824
Biography

PhD in Pharmacy from the Universitat de València (1991), I did a postdoctoral stay of more than 3 years at the Eccles Institute of Human Genetics (University of Utah, USA). After 15 years dedicated to the study of the yeast Saccharomyces cerevisiae from almost any point of view (study of the cell wall, model system for the study of human tumor suppressor genes, analysis of stress and contamination in brewing yeast or global gene expression in wine yeasts), I joined the field of bacterial genomic evolution, in which I have been working since 2001 as a member of the Evolutionary Genetics group of the Universitat de València, where I am currently Full Professor of Genetics.

I do my research at the Institute for Integrative Systems Biology (I2SysBio), a joint collaborative center Universitat de València - CSIC. Since 2001, my work has been mainly devoted to the study of the genome of endosymbiotic bacteria, which live inside specialized cells of insect with restricted diets (such as aphids, weevils or mealybugs), to understand the relationship between these bacteria and their hosts, the bacterial genome reduction in these conditions, and its consequences for the inferred metabolic network. As a complement to these studies, I have also been involved in studies on the definition of the minimal genome, essential for the maintenance of a living cell, and its implications in the field of Synthetic Biology.

In recent years, our consolidated model system to study symbiotic interactions is the German cockroach Blattella germanica. Cockroaches are specially interesting because two symbiotic systems coexist in each individual, an obligate endosymbiont and a complex gut microbiota. We have developed strategies to better understand the implication of each sytem in the host welfare, and their putative crosstalk. More recently, we are focusing on the host mechanisms to control the symbionts, with special interest in antimicrobial peptides and microRNAs.

Current research projects

- Host-symbiont communication and its utility in biological pest and pathogen control (SYMB-CONTROL, PID2021-128201NB-I00; co-financed MICIN-UEFEDER-AEI, EU and Spain)
- Temperature and antibiotics stress: effects on phage bacteria interactions in the gut microbiota of Blatella germanica (CIPROM/2021/042; Generalitat Valenciana, Spain).
- RNA communication across kingdoms: new mechanisms and strategies in pathogen control (exRNA-PATH, CA20110; COST action, EU)

 

Recent and selected publications

Cazzaniga, M., R. Domínguez-Santos, J. Marín-Miret, R. Gil, A. Latorre, C. García-Ferris (2023). Exploring gut microbial dynamics and symbiotic interaction in Blattella germanica using rifampicin. Biology 12:955. doi: 10.3390/biology12070955

Latorre, A., R. Domínguez-Santos, C. García-Ferris, R. Gil (2022). Of cockroaches and symbionts: recent advances in the characterization of the relationship between Blattella germanica and its dual symbiotic system. Live 12: 290. doi: 10.3390/life12020290

Garzón, M.J., M. Reyes-Prieto, R Gil (2022). The minimal translation machinery: what we can learn from naturally and experimentally reduced genomes. Front. Microbiol. 13:858983. doi: 10.3389/fmicb.2022.858983

Solana, J., E. Garrote-Sánchez, R. Gil (2021). DELEAT: gene essentiality prediction and deletion design for bacterial genome reduction. BMC Bioinformatics 22:444. doi: 10.1186/s12859-021-04348-5

Domínguez-Santos R, A.E. Pérez-Cobas, P. Cuti, V. Pérez-Brocal, C. García-Ferris, A. Moya, A. Latorre, R. Gil (2021). Interkingdom gut microbiome and resistome of the cockroach Blattella germanica. mSystems 6:e01213-20. doi: 10.1128/mSystems.01213-20

Reyes-Prieto, M., R. Gil, M. Llabrés, P. Palmer-Rodríguez, A. Moya (2021). The metabolic building blocks of a minimal cell. Biology, 10:5. doi: 10.3390/biology10010005

Gil, R., A. Latorre (2019). Unity makes strength: a review on mutualistic symbiosis in representative insect clades. Life 9: 21; doi:10.3390/life9010021.

Gil, R., C. Vargas-Chavez, S. López-Madrigal, D. Santos-García, A. Latorre, A. Moya (2018). Tremblaya phenacola PPER: An evolutionary beta-gammaproteobacterium collage. ISME J. 12:124-135. doi: 10.1038/ismej.2017.144

López-Madrigal, S., R. Gil (2017). Et tu, Brute? Not even intracellular mutualistic symbionts escape horizontal gene transfer. Genes 8:247. doi: 10.3390/genes8100247

Lloréns-Rico, V., J. Cano, T. Kamminga, R. Gil, A. Latorre, W. H. Chen, P. Bork, J. I. Glass, L. Serrano, M. Lluch-Senar (2016). Bacterial antisense RNAs are mainly the product of transcriptional noise. Sci. Adv. 2:e1501363. doi: 10.1126/sciadv.1501363

Klein, A., L. Schrader, R. Gil, A. Manzano-Marín, L. Flórez, D. Wheeler, J. H. Werren, A. Latorre, J. Heinze, M. Kaltenpoth, A. Moya, J. Oettler (2016). A novel intracellular mutualistic bacterium in the invasive ant Cardiocondyla obscurior. ISME J. 10:376-388. doi: 10.1038/ismej.2015.119

Gil, R., J. Peretó (2015). Small genomes and the difficulty to define minimal translation and metabolic machineries. Front. Ecol. Evol. 3:123. doi: 10.3389/fevo.2015.00123

López-Madrigal, S., A. Latorre, A. Moya, R. Gil (2015). The link between independent acquisition of intracellular gamma-endosymbionts and concerted evolution in Tremblaya princeps. Front. Microbiol. 6:642. doi: 10.3389/fmicb.2015.00642

Gil, R. (2014). The minimal gene-set machinery. In Encyclopedia of Molecular Cell Biology and Molecular Medicine: Synthetic Biology, 2nd edition. Meyers RA (ed.). Wiley-VCH Verlag GmbH & Co. pp. 1-36. doi: 10.1002/3527600906.mcb.20130079

López-Madrigal, S., A. Beltrà, S. Resurrección, A. Soto, A. Latorre, A. Moya, R. Gil (2014). Molecular evidence for ongoing complementarity and horizontal gene transfer in endosymbiotic systems of mealybugs. Front. Microbiol. 5:449. doi: 10.3389/fmicb.2014.00449

Oakeson, K. F.*, R. Gil*, A. L. Clayton, D. M. Dunn, A. C. von Niederhausern, C. Hamil, A. Aoyagi, B. Duval, A. Baca, F.J. Silva, A. Vallier, D. G. Jackson, A. Latorre, R. B. Weiss, A. Heddi, A. Moya, C. Dale (2014). Genome degeneration and adaptation in a nascent stage of symbiosis. Genome Biol. Evol. 6:76-93. doi: 10.1093/gbe/evt210 *Equal contribution.

López-Madrigal, S., A. Latorre, M. Porcar, A. Moya, R. Gil (2013). Mealybugs nested endosymbiosis: going into the ‘matryoshka’system in Planococcus citri in depth. BMC Microbiol. 13:74. doi: 10.1186/1471-2180-13-74

Moya, A., R. Gil, A. Latorre., J. Peretó, M.P. Garcillán-Barcia, F. de la Cruz (2009). Towards minimal bacterial cells: evolution versus design. FEMS Microbiol. Rev. 33:225-235. doi: 10.1111/j.1574-6976.2008.00151.x

Moya, A., J. Peretó, R. Gil, A. Latorre (2008). Learning how to live together: genomic insights into prokaryote-animal symbioses. Nature Rev. Genet. 9:218-229. doi:10.1038/nrg2319 

Tamames, J.*, R. Gil*, A. Latorre, J. Peretó, F.J. Silva, A. Moya (2006). The frontier between cell and organelle: genome analysis of Candidatus Carsonella ruddii. BMC Ecol. Evol. 7:181. doi: 10.1186/1471-2148-7-181 *Equal contribution.

T. Gabaldón, J. Peretó, F. Montero, R. Gil, A. Latorre, A. Moya (2007). Structural analyses of a hypothetical minimal metabolism. Phil. Trans. R. Soc. B. Biol. Sci. 362:1751-1762. doi:  10.1098/rstb.2007.2067

Pérez-Brocal, V., R. Gil, S. Ramos, A. Lamelas, M. Postigo, J. M. Michelena, F. J. Silva, A. Moya, A. Latorre (2006). A small microbial genome: the end of a long symbiotic relationship? Science 314:312-313. doi: 10.1126/science.1130441

Gil, R., F. J. Silva, J. Peretó, A. Moya (2004). Determination of the core of the minimal bacterial gene set. Microbiol. Mol. Biol. Rev. 68: 518-537. doi: 10.1128/MMBR.68.3.518-537.2004

Gil, R., B. Sabater-Muñoz, A. Latorre, F. J. Silva, A. Moya (2002). Extreme genome reduction in Buchnera spp.: towards the minimal genome needed for symbiotic life. Proc. Natl. Acad. Sci. USA 99: 4454-4458. doi: 10.1073/pnas.062067299

Subjects taught and teaching methods
Journal Publications
Projects