University of València COVID Scientific and Technological Offer COVID Scientific and Technological Offer Logo del portal

ADME-Tox drug prediction

ADME-tox prediction of drugs using Molecular Topology.

Ageing

Our major aim now is identifying longevity-related genes, finding ways of upregulating these genes by physiological, nutritional, and pharmacological intervention and determining how to promote healthy ageing.

Development of cellular models from cells of patients with RRD

Immortalisation of monocytes and hepatocytes from patients with severe AATD (ZZ). Cell cultures derived from nasal ciliated epithelium by using the Air-Liquid technique (ALI).

Evolutionary Systems Biology

Study of the evolution of complete genomes and the genes present in them, with special emphasis on bacteria and viruses.

Evolutionary genetics

The main research lines are: i) Evolution of symbiosis ii) Synthetic biology iii) Genetic study of aphids

Exercise

Our major aim was originally to test whether free radicals associated with exercise could lead to damage in muscle and to protect these muscles by various interventions such as training and nutrition.

Experimental evolution of viruses

We use viruses as model organisms in the laboratory to study evolutionary processes on an experimental basis.

Gene therapy in RRD

Genome editing and repair by using the CRISPR/Cas9 system and non-viral gene therapy techniques of the Z mutation of the SERPINA1 gene that encodes for the alpha-1 antitrypsin gene in monocytes and hepatocytes of patients with alpha-1 antitrypsin deficiency.

Identification of the specific mechanisms of cell deregulation that facilitate their diagnosis/prognosis

RRDs are very complex and are associated with alterations in multiple metabolic pathways. An important aspect for the RRD diagnosis, prognosis and treatment is to identify the aberrant changes that may occur in these metabolic pathways and to elucidate their connection with  the disease. In this regard, we will use high performance trials such as microarrays and mass sequencing for the analysis of biological samples from patients with alpha-1 antitrypsin deficiency and primary ciliary dyskinesia syndrome in order to identify possible metabolic pathways involved in the development of these diseases, and with the aim, in turn, of identifying new diagnostic and prognostic biomarkers (including treatment response) and of identifying new therapeutic targets.

Membrane Protein assembly

Our goal is to explore the mechanistic principles of membrane protein insertion, folding and assembly into lipid membranes and to investigate the factors that determine membrane protein stability.

Membrane Protein proteomics

Overexpression of membrane proteins is often essential for structural and functional studies, but yields are frequently too low. Therefore, we investigate the consequences of overexpression of different membrane proteins in search for new components to improve such yields.

Molecular epidemiology of rotavirus and norovirus infections

This line of research focuses on the study of the epidemiology of rotavirus and norovirus through the application of molecular techniques (RT-PCR, qPCR, cDNA sequencing, etc.) and the detection of new variants of viral genotypes.

Molecular epidemiology

Use of genetic and genomic information of pathogenic microorganisms (bacteria and viruses) to study their spread in human populations and in their natural reservoirs, complementing the tasks of epidemiological care and control.

Pathogenesis and immune response of enteric virus infections: rotavirus and norovirus

The aim of this line of research is to study the pathogenic mechanisms and the immune response of infections by the two main enteric viruses (rotavirus and norovirus).

Physiopathology of Alzheimer’s disease

To determine the intercellular mechanisms of toxicity of amyloid beta, its interaction with mitochondrial metabolism and its consequences in cell signalling. Our idea is that Alzheimer’s and Tau toxicities are related and that free radicals play a major signalling role in this process.

Prediction of adverse drug effects

Predicting adverse drug effects using Molecular Topology.

Search for new drugs for colon cancer

Search for new drugs for colon cancer using Molecular Topology.

Search for new drugs for orphan diseases (antiparasitic and antiprotozoal drugs)

Search for new drugs for orphan diseases (antiparasitic and antiprotozoal drugs) using Molecular Topology.

Simulation of chemical processes in biological environments

Study by computational tools of chemical reactions in enzymes and aqueous solution by means of QM/MM Molecular Dynamica.

Study of REDOX biology in patients with RRD

Study by means of Flow Cytometry techniques of REDOX biology in patients with Alpha-1 Antitrypsin Deficiency and Primary Ciliary Dyskinesia Syndrome.

Study of virus / microbiota / host interactions

The aim of this line of research is to study the interactions that occur between enteric viruses and the host without excluding the interactions that occur between enteric viruses and the intestinal microbiota or the interaction between the intestinal microbiota and the host.

The search for new active ingredients against inflammatory bowel disease

Search for new compounds, of natural and synthetic origin, potentially effective against ulcerative colitis, applying Molecular Topology.

Viral mutation and evolution

Using various experimental approaches, we aim to identify and characterise mechanisms in the generation of RNA virus diversity, and to obtain quantitative estimates of mutation rates in RNA viruses.