Preprints

  • Lipschitz regularity for manifold-constrained ROF elliptic systems
    with S. Moll and V. Pallardó-Julià, Submitted.[PDF]
  • Inverse Mean Curvature Flow coming out of crystals
    Oberwolfach Reports (2025), to appear.   [PDF]

Publications

  • Characterization of the subdifferential and minimizers for the anisotropic p-capacity
    with S. Moll and M. Solera, Adv. Calc. Var. 18 (2025), no. 1, 25–48.   [link]
  • The quermassintegral preserving mean curvature flow in the sphere
    with J. Scheuer, Analysis & PDE 17 (2024), no. 10, 3589–3621.  [link]
  • Weak solutions of Anisotropic (& crystalline) inverse mean curvature flow as limits of p-capacitary potentials
    with S. Moll and M. Solera, J. Funct. Anal. 287 (2024), no. 11, paper no. 110642, 56 pp.   [link]
  • Partial regularity for manifold constrained quasilinear elliptic systems
    with S. Moll and V. Pallardó-Julià, Nonlinear Anal. 249 (2024), no. 11, paper no. 113643, 5 pp.  [link]
  • Snapshots of non-local constrained mean curvature-type flows
    RSME Springer Ser.10 Springer, Cham, 2023, 1–17.  [link]
  • Brownian motion on Perelman's almost Ricci-flat manifold
    with R. Haslhofer, J. Reine Angew. Math. 764 (2020), 217–239.   [PDF]
  • The Ricci flow under almost non-negative curvature conditions
    with R. H. Bamler and B. Wilking, Invent. Math. 217 (2019), no. 1, 95–126.   [link]
  • Negative lower curvature bounds under Ricci flow
    Oberwolfach Reports 14 (2017), no. 3, 2190-2193.   [PDF]
  • Ricci flow beyond non-negative curvature conditions
    Oberwolfach Reports 14 (2017), no. 2, 1921-1924.   [PDF]
  • Non-preserved curvature conditions under constrained mean curvature flows
    with V. Miquel, Differential Geometry and its Applications 49 (2016), 287-300.   [PDF]
  • How to produce a Ricci Flow via Cheeger-Gromoll exhaustion
    with B. Wilking, J. Eur. Math. Soc. (JEMS), 17 (2015), 3153-3194.  [PDF]
  • A generalization of Gromov's almost flat manifold theorem
    Oberwolfach Reports 11 (2014), no. 2, 1611-1613.   [PDF]
  • The Canonical Expanding Soliton and Harnack inequalities for Ricci Flow
    with P. M. Topping, Trans. Amer. Math. Soc. 364 (2012), 3001-3021.[PDF]
  • The canonical Shrinking Soliton associated to a Ricci flow
    with P.M. Topping, Calc. Var. Partial Differential Equations 43 (2012), 173-184 [PDF]
  • Chance or Chaos? Fractal geometry aimed to inspect the nature of Bitcoin
    with F. Sánchez-Coll, I. Tormo-Xaixo. Fractal Fract.7 (2023), no. 2, 870.  [link]
  • Volume-preserving mean curvature flow of revolution hypersurfaces between two equidistants
    with V. Miquel, Calc. Var. Partial Differential Equations 43 (2012), 185-210.[PDF]
  • How to produce a Ricci flow via Cheeger-Gromoll exhaustion (II)
    Oberwolfach Reports 9 (2012), no. 2, 1648-1651.   [PDF]
  • How to produce a Ricci flow via Cheeger-Gromoll exhaustion
    Oberwolfach Reports 9 (2012), no. 2, 1567-1570.   [PDF]
  • Volume-preserving flow by powers of the mth mean curvature
    with C. Sinestrari, Calc. Var. Partial Differential Equations 38 (2010), 441-469.[PDF]
  • Volume-preserving Mean Curvature Flow of revolution hypersurfaces in a Rotationally Symmetric Space
    with V. Miquel, Math. Z. 261 (2009), no. 3, 489-510.[PDF]
  • Volume-preserving Mean Curvature Flow in the Hyperbolic Space
    with V. Miquel, Indiana Univ. Math. J. 56 (2007), no. 5, 2061-2086.>[PDF]
  • Mean curvature in Minkowski spaces
    with V. Miquel, University of Belgrade, Faculty of Mathematics, Belgrade, (2006), 81–97.[PDF]
  • An introduction to Hamilton and Perelman's work on the conjectures of Poincaré and Thurston
    with A. Borisenko and V. Miquel, Matemàtiques3 (2006), no. 1, 195-349.[PDF]
  • The Hamilton-Perelman proof of the Poincaré and Thurston conjectures
    with V. Miquel, Gac. R. Soc. Mat. Esp.9 (2006), no. 1, 15–42.[PDF]
  • CCD observations of asteroids and satellites at Valencia Observatory
    with A. López García, J.A. Moraño Fernández and L. Yagudin, Proceedings of Asteroids, Comets, Meteors - ACM 2002.[link]