Referencias
Anselin, L., Li, X., and Koschinsky, J. (2021). GeoDa, from the desktop
to an ecosystem for exploring spatial data. Geographical
Analysis, 54(3), 439–466. https://doi.org/10.1111/gean.12311
Anselin, L., Syabri, I., and Kho, Y. (2005). GeoDa: An introduction to
spatial data analysis. Geographical Analysis, 38(1),
5–22. https://doi.org/10.1111/j.0016-7363.2005.00671.x
Baddeley, A., Turner, R., and Rubak, E. (2022). Spatstat: Spatial
point pattern analysis, model-fitting, simulation, tests. http://spatstat.org/
Berhane, T. M., Lane, C. R., Wu, Q., Autrey, B. C., Anenkhonov, O. A.,
Chepinoga, V. V., and Liu, H. (2018). Decision-tree, rule-based, and
random forest classification of high-resolution multispectral imagery
for wetland mapping and inventory. Remote Sensing,
10(4). https://doi.org/10.3390/rs10040580
Berman, M., and Diggle, P. (1989). Estimating weighted integrals of the
second-order intensity of a spatial point process. Journal of the
Royal Statistical Society: Series B (Methodological),
51(1), 81–92. https://doi.org/10.1111/j.2517-6161.1989.tb01750.x
Bivand, R. (2022). Spdep: Spatial dependence: Weighting schemes,
statistics.
Bivand, R., Keitt, T., and Rowlingson, B. (2017). Rgdal: Bindings
for the ’geospatial’ data abstraction library. https://CRAN.R-project.org/package=rgdal
Bivand, R., Nowosad, J., and Lovelace, R. (2022). spData: Datasets
for spatial analysis. https://jakubnowosad.com/spData/
Bivand, R., Pebesma, E., and Gómez-Rubio, V. (2013). Applied spatial
data analysis with R, second edition. Springer, NY. http://www.asdar-book.org/
Bivand, R., and Yu, D. (2024). Spgwr: Geographically weighted
regression. https://CRAN.R-project.org/package=spgwr
Calabrese, F., Diao, M., Di Lorenzo, G., Ferreira, J., and Ratti, C.
(2013). Understanding individual mobility patterns from urban sensing
data: A mobile phone trace example. Transportation Research Part C
Emerging Technologies, 26. https://doi.org/10.1016/j.trc.2012.09.009
Cambon, J., Hernangómez, D., Belanger, C., and Possenriede, D. (2021).
Tidygeocoder: An r package for geocoding. Journal of Open Source
Software, 6(65), 3544. https://doi.org/10.21105/joss.03544
Cao, J.-H., Xie, C., Zhou, Y., Wang, G.-J., and Zhu, Y. (2025).
Forecasting carbon price: A novel multi-factor spatial-temporal GNN
framework integrating graph WaveNet and self-attention mechanism.
Energy Economics, 144, 108318. https://doi.org/10.1016/j.eneco.2025.108318
Cao, J., Li, Q., Tu, W., Gao, Q., Cao, R., and Zhong, C. (2021).
Resolving urban mobility networks from individual travel graphs using
massive-scale mobile phone tracking data. Cities, 110,
103077. https://doi.org/10.1016/j.cities.2020.103077
Cascajo, R., and Jordá, P. (2010). ¿Cómo nos movemos los españoles?
IX Congreso de Ingeniería Del Transporte, CIT 2010.
Cheng, J., Schloerke, B., Karambelkar, B., and Xie, Y. (2024).
Leaflet: Create interactive web maps with the JavaScript ’leaflet’
library. https://CRAN.R-project.org/package=leaflet
Chiou, E. (2024). Mapquestr: MapQuest in r.
Choi, Y. (2023). GeoAI: Integration of artificial intelligence, machine
learning, and deep learning with GIS. Applied Sciences,
13(6). https://doi.org/10.3390/app13063895
Cooley, D. (2025). googlePolylines: Encoding coordinates into
’google’ polylines. https://CRAN.R-project.org/package=googlePolylines
Cressie, N. (1993). Statistics for spatial data. John Wiley
& Sons, Inc.
Diggle, P. (1985). A kernel method for smoothing point process data.
Journal of the Royal Statistical Society. Series C (Applied
Statistics), 34(2), 138–147. http://www.jstor.org/stable/2347366
Diggle, P. (2003). Spatial analysis of spatial point patterns.
CRC Press.
Dorling, D. (2011). Area cartograms: Their use and creation. In The
map reader (pp. 252–260). John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470979587.ch33
Dueker, K. J., and Kjerne, D. (1989). Multipurpose cadastre: Terms
and definitions. American Soc. for Photogrammetry; Remote Sensing.
Dunnington, D. (2022). Ggspatial: Spatial data framework for
ggplot2. https://CRAN.R-project.org/package=ggspatial
Gatscha, S., Karambelkar, B., and Schloerke, B. (2024).
Leaflet.extras: Extra functionality for ’leaflet’ package. https://CRAN.R-project.org/package=leaflet.extras
Gelfand, A. E., Schmidt, A. M., Banerjee, S., and Sirmans, C. F. (2004).
Nonstationary multivariate process modeling through spatially varying
coregionalization. Test, 13, 263–312. https://doi.org/10.1007/BF02595775
Georganos, S., Grippa, T., Gadiaga, A. N., Linard, C., Lennert, M.,
Vanhuysse, S., Mboga, N., Wolff, E., and and, S. K. (2021). Geographical
random forests: A spatial extension of the random forest algorithm to
address spatial heterogeneity in remote sensing and population
modelling. Geocarto International, 36(2), 121–136. https://doi.org/10.1080/10106049.2019.1595177
Hahsler, M., and Piekenbrock, M. (2022). Dbscan: Density-based
spatial clustering of applications with noise (DBSCAN) and related
algorithms. https://github.com/mhahsler/dbscan
Hahsler, M., Piekenbrock, M., and Doran, D. (2019). dbscan: Fast density-based clustering with
R. Journal of Statistical Software,
91(1), 1–30. https://doi.org/10.18637/jss.v091.i01
Hernangómez, D. (2024). nominatimlite:
Interface with Nominatim API service
(Version 0.2.1). https://doi.org/10.5281/zenodo.5113195
Hernangómez, D. (2025). mapSpain:
Administrative boundaries of spain (Version 0.10.0). https://doi.org/10.5281/zenodo.5366622
Hijmans, R. J. (2023). Raster: Geographic data analysis and
modeling. https://rspatial.org/raster
Hijmans, R. J. (2025). Terra: Spatial data analysis. https://CRAN.R-project.org/package=terra
Jevinger, Å., Zhao, C., and Persson, J. A. (2024). Artificial
intelligence for improving public transport: A mapping study. Public
Transport, 16(1), 99–158. https://doi.org/10.1007/s12469-023-00334-7
Jörg Sander, Martin Ester, Hans-Peter Kriegel, and Xiaowei Xu. (1998).
Density-based clustering in spatial databases: The algorithm GDBSCAN and
its applications. Data Mining and Knowledge Discovery,
2(2), 169–194. https://doi.org/10.1023/A:1009745219419
Kahle, D., and Wickham, H. (2013). Ggmap: Spatial visualization with
ggplot2. The R Journal, 5(1), 144–161. https://journal.r-project.org/archive/2013-1/kahle-wickham.pdf
Koh, J. (2023). Gradient boosting with extreme-value theory for wildfire
prediction. Extremes, 26(2), 273–299. https://doi.org/10.1007/s10687-022-00454-6
Kopczewska, K. (2022). Spatial machine learning: New opportunities for
regional science. The Annals of Regional Science,
68(3), 713–755. https://doi.org/10.1007/s00168-021-01101-x
Kotov, E., Lovelace, R., and Vidal-Tortosa, E. (2024).
Spanishoddata: Get spanish origin-destination data. https://doi.org/10.32614/CRAN.package.spanishoddata
Koutsos, T. M., Menexes, G. C., and Mamolos, A. P. (2021). The use of
crop yield autocorrelation data as a sustainable approach to adjust
agronomic inputs. Sustainability, 13(4). https://doi.org/10.3390/su13042362
Kuhn, M. (2022). Caret: Classification and regression training.
https://github.com/topepo/caret/
Kuhn, M., and Vaughan, D. (2025). Parsnip: A common API to modeling
and analysis functions. https://CRAN.R-project.org/package=parsnip
Kuhn, M., and Wickham, H. (2025). Tidymodels: Easily install and
load the ’tidymodels’ packages. https://CRAN.R-project.org/package=tidymodels
Kuhn, and Max. (2008). Building predictive models in r using the caret
package. Journal of Statistical Software, 28(5), 1–26.
https://doi.org/10.18637/jss.v028.i05
Lang, M., Binder, M., Richter, J., Schratz, P., Pfisterer, F., Coors,
S., Au, Q., Casalicchio, G., Kotthoff, L., and Bischl, B. (2019). mlr3: A modern object-oriented machine learning
framework in R. Journal of Open Source Software.
https://doi.org/10.21105/joss.01903
Lang, M., Bischl, B., Richter, J., Schratz, P., Casalicchio, G., and
Coors, S. (2025). mlr3: Machine learning in r - next
generation. https://CRAN.R-project.org/package=mlr3
Li, S., Jiang, Y., Ke, S., Nie, K., and Wu, C. (2021). Understanding the
effects of influential factors on housing prices by combining extreme
gradient boosting and a hedonic price model (XGBoost-HPM).
Land, 10(5). https://doi.org/10.3390/land10050533
Lovelace, R., and Ellison, R. (2018). stplanr: A
Package for Transport Planning. The R
Journal, 10(2), 7–23. https://doi.org/10.32614/RJ-2018-053
Lovelace, R., and Morgan, M. (2024). Od: Manipulate and map
origin-destination data. https://CRAN.R-project.org/package=od
Mahoney, M. (2025). Waywiser: Ergonomic methods for assessing
spatial models. https://CRAN.R-project.org/package=waywiser
Mahoney, M., and Silge, J. (2024). Spatialsample: Spatial resampling
infrastructure. https://CRAN.R-project.org/package=spatialsample
Meyer, H., Milà, C., Ludwig, M., Linnenbrink, J., and Schumacher, F.
(2025). CAST: ’Caret’ applications for spatial-temporal models.
https://CRAN.R-project.org/package=CAST
MITMS. (2024). Estudio de movilidad de viajeros de ámbito nacional
aplicando la tecnología big data. Informe metodológico. Secretaría
de Estado de Transportes y Movilidad Sostenible; Ministerio de
Transportes y Movilidad Sostenible. https://www.transportes.gob.es/ministerio/proyectos-singulares/estudio-de-movilidad-con-big-data
Mühleisen, H., and Raasveldt, M. (2024). Duckdb: DBI package for the
DuckDB database management system. https://CRAN.R-project.org/package=duckdb
Neuwirth, E. (2022). RColorBrewer: ColorBrewer palettes. https://CRAN.R-project.org/package=RColorBrewer
Oladimeji, D., Gupta, K., Kose, N. A., Gundogan, K., Ge, L., and Liang,
F. (2023). Smart transportation: An overview of technologies and
applications. Sensors, 23(8), 3880. https://doi.org/10.3390/s23083880
Oleś, A. (2024). Openrouteservice: Openrouteservice API client.
https://github.com/GIScience/openrouteservice-r
Padgham, M., Rudis, B., Lovelace, R., Salmon, M., and Maspons, J.
(2023). Osmdata: Import OpenStreetMap data as simple features or
spatial objects. https://CRAN.R-project.org/package=osmdata
Pebesma, E. (2018). Simple Features for R:
Standardized Support for Spatial Vector Data. The R
Journal, 10(1), 439–446. https://doi.org/10.32614/RJ-2018-009
Pebesma, E. (2022a). Sf: Simple features for r. https://CRAN.R-project.org/package=sf
Pebesma, E. (2022b). Spacetime: Classes and methods for
spatio-temporal data. https://github.com/edzer/spacetime
Pebesma, E. (2022c). Stars: Spatiotemporal arrays, raster and vector
data cubes. https://CRAN.R-project.org/package=stars
Pebesma, E., and Bivand, R. (2023). Sp: Classes and methods for
spatial data. https://CRAN.R-project.org/package=sp
Pebesma, E., and Graeler, B. (2022). Gstat: Spatial and
spatio-temporal geostatistical modelling, prediction and
simulation. https://github.com/r-spatial/gstat/
Pérez, V., and Aybar, C. (2024). Challenges in geocoding: An analysis of
r packages and web scraping approaches. ISPRS International Journal
of Geo-Information, 13(6). https://doi.org/10.3390/ijgi13060170
Perpiñán, O., and Hijmans, R. (2023). rasterVis. https://oscarperpinan.github.io/rastervis/
Pierce, D. (2023). ncdf4: Interface to unidata netCDF (version 4 or
earlier) format data files. https://CRAN.R-project.org/package=ncdf4
Possenriede, D., Sadler, J., and Salmon, M. (2021). Opencage:
Geocode with the OpenCage API. https://CRAN.R-project.org/package=opencage
Rowlingson, B., and Diggle, P. (2023). Splancs: Spatial and
space-time point pattern analysis. https://CRAN.R-project.org/package=splancs
Shabanpour, N., Razavi-Termeh, S. V., Sadeghi-Niaraki, A., Choi, S.-M.,
and Abuhmed, T. (2022). Integration of machine learning algorithms and
GIS-based approaches to cutaneous leishmaniasis prevalence risk mapping.
International Journal of Applied Earth Observation and
Geoinformation, 112, 102854. https://doi.org/10.1016/j.jag.2022.102854
Song, A., Liu, Y., Feng, T., Li, H., Zhang, Y., Wang, X., Liu, L.,
Zhang, B.-P., and Li, J.-F. (2022). Simultaneous enhancement of
piezoelectricity and temperature stability in KNN-based lead-free
ceramics via layered distribution of dopants. Advanced Functional
Materials, 32(34), 2204385. https://doi.org/10.1002/adfm.202204385
Taskin Kavzoglu, and Alihan Teke. (2022). Advanced hyperparameter
optimization for improved spatial prediction of shallow landslides using
extreme gradient boosting (XGBoost). Bulletin of Engineering Geology
and the Environment, 81(5). https://doi.org/10.1007/s10064-022-02708-w
Tennekes, M. (2018). tmap: Thematic maps in
R. Journal of Statistical Software,
84(6), 1–39. https://doi.org/10.18637/jss.v084.i06
Tennekes, M. (2021). Tmaptools: Thematic map tools. https://github.com/mtennekes/tmaptools
Tiefelsdorf, G., M., and Boots, B. (1999). Environment and Planning
A: Economy and Space, 31(1), 165–180. https://doi.org/10.1068/a310165
Tobler, W. (2004). Thirty five years of computer cartograms. Annals
of the Association of American Geographers, 94(1), 58–73.
https://doi.org/10.1111/j.1467-8306.2004.09401004.x
Tsavachidis, M., and Petit, Y. L. (2022). Re-shaping urban mobility –
key to europe´s green transition. Journal of Urban Mobility,
2, 100014. https://doi.org/10.1016/j.urbmob.2022.100014
Unterfinger, M. (2023). hereR: ’Sf’-based interface to the ’HERE’
REST APIs. https://CRAN.R-project.org/package=hereR
Valavi, R., Elith, J., Lahoz-Monfort, J. J., and Guillera-Arroita, G.
(2019). blockCV: An r package for generating spatially or
environmentally separated folds for k-fold cross-validation of species
distribution models. Methods in Ecology and Evolution,
10(2), 225–232. https://doi.org/10.1111/2041-210X.13107
Valavi, R., Elith, J., Lahoz-Monfort, J., Flint, I., and
Guillera-Arroita, G. (2024). blockCV: Spatial and environmental
blocking for k-fold and LOO cross-validation. https://CRAN.R-project.org/package=blockCV
Walker, K. (2023). Mapboxapi: R interface to ’mapbox’ web
services. https://CRAN.R-project.org/package=mapboxapi
Waller, L. A., and Gotway, C. A. (2004). Applied spatial statistics
for public health data. John Wiley & Sons. https://doi.org/10.1002/0471662682
Wang, F., Wang, Y., Zhang, K., Hu, M., Weng, Q., and Zhang, H. (2021).
Spatial heterogeneity modeling of water quality based on random forest
regression and model interpretation. Environmental Research,
202, 111660. https://doi.org/10.1016/j.envres.2021.111660
Wickham, H. (2016). ggplot2: Elegant graphics for data
analysis. Springer.
Wickham, H. (2022). Tidyverse: Easily install and load the
tidyverse. https://CRAN.R-project.org/package=tidyverse
Wickham, H. (2023). Stringr: Simple, consistent wrappers for common
string operations. https://CRAN.R-project.org/package=stringr
Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, K.,
Wilke, C., Woo, K., Yutani, H., and Dunnington, D. (2022). ggplot2:
Create elegant data visualisations using the grammar of graphics.
https://CRAN.R-project.org/package=ggplot2
Wickham, H., François, R., Henry, L., Müller, K., and Vaughan, D.
(2023). Dplyr: A grammar of data manipulation. https://CRAN.R-project.org/package=dplyr
Wickham, H., Vaughan, D., and Girlich, M. (2023). Tidyr: Tidy messy
data. https://CRAN.R-project.org/package=tidyr
Willberg, E., Järv, O., Väisänen, T., and Toivonen, T. (2021). Escaping
from cities during the COVID-19 crisis: Using mobile phone data to trace
mobility in finland. ISPRS International Journal of
Geo-Information, 10(2), 103. https://doi.org/10.3390/ijgi10020103
Wright, M. N., Wager, S., and Probst, P. (2024). Ranger: A fast
implementation of random forests. https://CRAN.R-project.org/package=ranger
Wright, M. N., and Ziegler, A. (2017). ranger: A fast implementation of random forests
for high dimensional data in C++ and R.
Journal of Statistical Software, 77(1), 1–17. https://doi.org/10.18637/jss.v077.i01
Xu, H., Omitaomu, F., Sabri, S., Zlatanova, S., Li, X., and Song, Y.
(2024). Leveraging generative AI for urban digital twins: A scoping
review on the autonomous generation of urban data, scenarios, designs,
and 3D city models for smart city advancement. Urban
Informatics, 3(1). https://doi.org/10.1007/s44212-024-00060-w
Xun Li, and Luc Anselin. (2024). Rgeoda: R library for spatial data
analysis. https://CRAN.R-project.org/package=rgeoda
Yan, S., Jing, L., and Wang, H. (2021). A new individual tree species
recognition method based on a convolutional neural network and
high-spatial resolution remote sensing imagery. Remote Sensing,
13(3). https://doi.org/10.3390/rs13030479
Zhou, Y., Zhang, Y., Pang, R., and Xu, B. (2021). Seismic fragility
analysis of high concrete faced rockfill dams based on plastic failure
with support vector machine. Soil Dynamics and Earthquake
Engineering, 144, 106587. https://doi.org/10.1016/j.soildyn.2021.106587