Referencias

Anselin, L., Li, X., and Koschinsky, J. (2021). GeoDa, from the desktop to an ecosystem for exploring spatial data. Geographical Analysis, 54(3), 439–466. https://doi.org/10.1111/gean.12311
Anselin, L., Syabri, I., and Kho, Y. (2005). GeoDa: An introduction to spatial data analysis. Geographical Analysis, 38(1), 5–22. https://doi.org/10.1111/j.0016-7363.2005.00671.x
Baddeley, A., Turner, R., and Rubak, E. (2022). Spatstat: Spatial point pattern analysis, model-fitting, simulation, tests. http://spatstat.org/
Berhane, T. M., Lane, C. R., Wu, Q., Autrey, B. C., Anenkhonov, O. A., Chepinoga, V. V., and Liu, H. (2018). Decision-tree, rule-based, and random forest classification of high-resolution multispectral imagery for wetland mapping and inventory. Remote Sensing, 10(4). https://doi.org/10.3390/rs10040580
Berman, M., and Diggle, P. (1989). Estimating weighted integrals of the second-order intensity of a spatial point process. Journal of the Royal Statistical Society: Series B (Methodological), 51(1), 81–92. https://doi.org/10.1111/j.2517-6161.1989.tb01750.x
Bivand, R. (2022). Spdep: Spatial dependence: Weighting schemes, statistics.
Bivand, R., Keitt, T., and Rowlingson, B. (2017). Rgdal: Bindings for the ’geospatial’ data abstraction library. https://CRAN.R-project.org/package=rgdal
Bivand, R., Nowosad, J., and Lovelace, R. (2022). spData: Datasets for spatial analysis. https://jakubnowosad.com/spData/
Bivand, R., Pebesma, E., and Gómez-Rubio, V. (2013). Applied spatial data analysis with R, second edition. Springer, NY. http://www.asdar-book.org/
Bivand, R., and Yu, D. (2024). Spgwr: Geographically weighted regression. https://CRAN.R-project.org/package=spgwr
Calabrese, F., Diao, M., Di Lorenzo, G., Ferreira, J., and Ratti, C. (2013). Understanding individual mobility patterns from urban sensing data: A mobile phone trace example. Transportation Research Part C Emerging Technologies, 26. https://doi.org/10.1016/j.trc.2012.09.009
Cambon, J., Hernangómez, D., Belanger, C., and Possenriede, D. (2021). Tidygeocoder: An r package for geocoding. Journal of Open Source Software, 6(65), 3544. https://doi.org/10.21105/joss.03544
Cao, J.-H., Xie, C., Zhou, Y., Wang, G.-J., and Zhu, Y. (2025). Forecasting carbon price: A novel multi-factor spatial-temporal GNN framework integrating graph WaveNet and self-attention mechanism. Energy Economics, 144, 108318. https://doi.org/10.1016/j.eneco.2025.108318
Cao, J., Li, Q., Tu, W., Gao, Q., Cao, R., and Zhong, C. (2021). Resolving urban mobility networks from individual travel graphs using massive-scale mobile phone tracking data. Cities, 110, 103077. https://doi.org/10.1016/j.cities.2020.103077
Cascajo, R., and Jordá, P. (2010). ¿Cómo nos movemos los españoles? IX Congreso de Ingeniería Del Transporte, CIT 2010.
Cheng, J., Schloerke, B., Karambelkar, B., and Xie, Y. (2024). Leaflet: Create interactive web maps with the JavaScript ’leaflet’ library. https://CRAN.R-project.org/package=leaflet
Chiou, E. (2024). Mapquestr: MapQuest in r.
Choi, Y. (2023). GeoAI: Integration of artificial intelligence, machine learning, and deep learning with GIS. Applied Sciences, 13(6). https://doi.org/10.3390/app13063895
Cooley, D. (2025). googlePolylines: Encoding coordinates into ’google’ polylines. https://CRAN.R-project.org/package=googlePolylines
Cressie, N. (1993). Statistics for spatial data. John Wiley & Sons, Inc.
Diggle, P. (1985). A kernel method for smoothing point process data. Journal of the Royal Statistical Society. Series C (Applied Statistics), 34(2), 138–147. http://www.jstor.org/stable/2347366
Diggle, P. (2003). Spatial analysis of spatial point patterns. CRC Press.
Dorling, D. (2011). Area cartograms: Their use and creation. In The map reader (pp. 252–260). John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470979587.ch33
Dueker, K. J., and Kjerne, D. (1989). Multipurpose cadastre: Terms and definitions. American Soc. for Photogrammetry; Remote Sensing.
Dunnington, D. (2022). Ggspatial: Spatial data framework for ggplot2. https://CRAN.R-project.org/package=ggspatial
Gatscha, S., Karambelkar, B., and Schloerke, B. (2024). Leaflet.extras: Extra functionality for ’leaflet’ package. https://CRAN.R-project.org/package=leaflet.extras
Gelfand, A. E., Schmidt, A. M., Banerjee, S., and Sirmans, C. F. (2004). Nonstationary multivariate process modeling through spatially varying coregionalization. Test, 13, 263–312. https://doi.org/10.1007/BF02595775
Georganos, S., Grippa, T., Gadiaga, A. N., Linard, C., Lennert, M., Vanhuysse, S., Mboga, N., Wolff, E., and and, S. K. (2021). Geographical random forests: A spatial extension of the random forest algorithm to address spatial heterogeneity in remote sensing and population modelling. Geocarto International, 36(2), 121–136. https://doi.org/10.1080/10106049.2019.1595177
Hahsler, M., and Piekenbrock, M. (2022). Dbscan: Density-based spatial clustering of applications with noise (DBSCAN) and related algorithms. https://github.com/mhahsler/dbscan
Hahsler, M., Piekenbrock, M., and Doran, D. (2019). dbscan: Fast density-based clustering with R. Journal of Statistical Software, 91(1), 1–30. https://doi.org/10.18637/jss.v091.i01
Hernangómez, D. (2024). nominatimlite: Interface with Nominatim API service (Version 0.2.1). https://doi.org/10.5281/zenodo.5113195
Hernangómez, D. (2025). mapSpain: Administrative boundaries of spain (Version 0.10.0). https://doi.org/10.5281/zenodo.5366622
Hijmans, R. J. (2023). Raster: Geographic data analysis and modeling. https://rspatial.org/raster
Hijmans, R. J. (2025). Terra: Spatial data analysis. https://CRAN.R-project.org/package=terra
Jevinger, Å., Zhao, C., and Persson, J. A. (2024). Artificial intelligence for improving public transport: A mapping study. Public Transport, 16(1), 99–158. https://doi.org/10.1007/s12469-023-00334-7
Jörg Sander, Martin Ester, Hans-Peter Kriegel, and Xiaowei Xu. (1998). Density-based clustering in spatial databases: The algorithm GDBSCAN and its applications. Data Mining and Knowledge Discovery, 2(2), 169–194. https://doi.org/10.1023/A:1009745219419
Kahle, D., and Wickham, H. (2013). Ggmap: Spatial visualization with ggplot2. The R Journal, 5(1), 144–161. https://journal.r-project.org/archive/2013-1/kahle-wickham.pdf
Koh, J. (2023). Gradient boosting with extreme-value theory for wildfire prediction. Extremes, 26(2), 273–299. https://doi.org/10.1007/s10687-022-00454-6
Kopczewska, K. (2022). Spatial machine learning: New opportunities for regional science. The Annals of Regional Science, 68(3), 713–755. https://doi.org/10.1007/s00168-021-01101-x
Kotov, E., Lovelace, R., and Vidal-Tortosa, E. (2024). Spanishoddata: Get spanish origin-destination data. https://doi.org/10.32614/CRAN.package.spanishoddata
Koutsos, T. M., Menexes, G. C., and Mamolos, A. P. (2021). The use of crop yield autocorrelation data as a sustainable approach to adjust agronomic inputs. Sustainability, 13(4). https://doi.org/10.3390/su13042362
Kuhn, M. (2022). Caret: Classification and regression training. https://github.com/topepo/caret/
Kuhn, M., and Vaughan, D. (2025). Parsnip: A common API to modeling and analysis functions. https://CRAN.R-project.org/package=parsnip
Kuhn, M., and Wickham, H. (2025). Tidymodels: Easily install and load the ’tidymodels’ packages. https://CRAN.R-project.org/package=tidymodels
Kuhn, and Max. (2008). Building predictive models in r using the caret package. Journal of Statistical Software, 28(5), 1–26. https://doi.org/10.18637/jss.v028.i05
Lang, M., Binder, M., Richter, J., Schratz, P., Pfisterer, F., Coors, S., Au, Q., Casalicchio, G., Kotthoff, L., and Bischl, B. (2019). mlr3: A modern object-oriented machine learning framework in R. Journal of Open Source Software. https://doi.org/10.21105/joss.01903
Lang, M., Bischl, B., Richter, J., Schratz, P., Casalicchio, G., and Coors, S. (2025). mlr3: Machine learning in r - next generation. https://CRAN.R-project.org/package=mlr3
Li, S., Jiang, Y., Ke, S., Nie, K., and Wu, C. (2021). Understanding the effects of influential factors on housing prices by combining extreme gradient boosting and a hedonic price model (XGBoost-HPM). Land, 10(5). https://doi.org/10.3390/land10050533
Lovelace, R., and Ellison, R. (2018). stplanr: A Package for Transport Planning. The R Journal, 10(2), 7–23. https://doi.org/10.32614/RJ-2018-053
Lovelace, R., and Morgan, M. (2024). Od: Manipulate and map origin-destination data. https://CRAN.R-project.org/package=od
Mahoney, M. (2025). Waywiser: Ergonomic methods for assessing spatial models. https://CRAN.R-project.org/package=waywiser
Mahoney, M., and Silge, J. (2024). Spatialsample: Spatial resampling infrastructure. https://CRAN.R-project.org/package=spatialsample
Meyer, H., Milà, C., Ludwig, M., Linnenbrink, J., and Schumacher, F. (2025). CAST: ’Caret’ applications for spatial-temporal models. https://CRAN.R-project.org/package=CAST
MITMS. (2024). Estudio de movilidad de viajeros de ámbito nacional aplicando la tecnología big data. Informe metodológico. Secretaría de Estado de Transportes y Movilidad Sostenible; Ministerio de Transportes y Movilidad Sostenible. https://www.transportes.gob.es/ministerio/proyectos-singulares/estudio-de-movilidad-con-big-data
Mühleisen, H., and Raasveldt, M. (2024). Duckdb: DBI package for the DuckDB database management system. https://CRAN.R-project.org/package=duckdb
Neuwirth, E. (2022). RColorBrewer: ColorBrewer palettes. https://CRAN.R-project.org/package=RColorBrewer
Oladimeji, D., Gupta, K., Kose, N. A., Gundogan, K., Ge, L., and Liang, F. (2023). Smart transportation: An overview of technologies and applications. Sensors, 23(8), 3880. https://doi.org/10.3390/s23083880
Oleś, A. (2024). Openrouteservice: Openrouteservice API client. https://github.com/GIScience/openrouteservice-r
Padgham, M., Rudis, B., Lovelace, R., Salmon, M., and Maspons, J. (2023). Osmdata: Import OpenStreetMap data as simple features or spatial objects. https://CRAN.R-project.org/package=osmdata
Pebesma, E. (2018). Simple Features for R: Standardized Support for Spatial Vector Data. The R Journal, 10(1), 439–446. https://doi.org/10.32614/RJ-2018-009
Pebesma, E. (2022a). Sf: Simple features for r. https://CRAN.R-project.org/package=sf
Pebesma, E. (2022b). Spacetime: Classes and methods for spatio-temporal data. https://github.com/edzer/spacetime
Pebesma, E. (2022c). Stars: Spatiotemporal arrays, raster and vector data cubes. https://CRAN.R-project.org/package=stars
Pebesma, E., and Bivand, R. (2023). Sp: Classes and methods for spatial data. https://CRAN.R-project.org/package=sp
Pebesma, E., and Graeler, B. (2022). Gstat: Spatial and spatio-temporal geostatistical modelling, prediction and simulation. https://github.com/r-spatial/gstat/
Pérez, V., and Aybar, C. (2024). Challenges in geocoding: An analysis of r packages and web scraping approaches. ISPRS International Journal of Geo-Information, 13(6). https://doi.org/10.3390/ijgi13060170
Perpiñán, O., and Hijmans, R. (2023). rasterVis. https://oscarperpinan.github.io/rastervis/
Pierce, D. (2023). ncdf4: Interface to unidata netCDF (version 4 or earlier) format data files. https://CRAN.R-project.org/package=ncdf4
Possenriede, D., Sadler, J., and Salmon, M. (2021). Opencage: Geocode with the OpenCage API. https://CRAN.R-project.org/package=opencage
Rowlingson, B., and Diggle, P. (2023). Splancs: Spatial and space-time point pattern analysis. https://CRAN.R-project.org/package=splancs
Shabanpour, N., Razavi-Termeh, S. V., Sadeghi-Niaraki, A., Choi, S.-M., and Abuhmed, T. (2022). Integration of machine learning algorithms and GIS-based approaches to cutaneous leishmaniasis prevalence risk mapping. International Journal of Applied Earth Observation and Geoinformation, 112, 102854. https://doi.org/10.1016/j.jag.2022.102854
Song, A., Liu, Y., Feng, T., Li, H., Zhang, Y., Wang, X., Liu, L., Zhang, B.-P., and Li, J.-F. (2022). Simultaneous enhancement of piezoelectricity and temperature stability in KNN-based lead-free ceramics via layered distribution of dopants. Advanced Functional Materials, 32(34), 2204385. https://doi.org/10.1002/adfm.202204385
Taskin Kavzoglu, and Alihan Teke. (2022). Advanced hyperparameter optimization for improved spatial prediction of shallow landslides using extreme gradient boosting (XGBoost). Bulletin of Engineering Geology and the Environment, 81(5). https://doi.org/10.1007/s10064-022-02708-w
Tennekes, M. (2018). tmap: Thematic maps in R. Journal of Statistical Software, 84(6), 1–39. https://doi.org/10.18637/jss.v084.i06
Tennekes, M. (2021). Tmaptools: Thematic map tools. https://github.com/mtennekes/tmaptools
Tiefelsdorf, G., M., and Boots, B. (1999). Environment and Planning A: Economy and Space, 31(1), 165–180. https://doi.org/10.1068/a310165
Tobler, W. (2004). Thirty five years of computer cartograms. Annals of the Association of American Geographers, 94(1), 58–73. https://doi.org/10.1111/j.1467-8306.2004.09401004.x
Tsavachidis, M., and Petit, Y. L. (2022). Re-shaping urban mobility – key to europe´s green transition. Journal of Urban Mobility, 2, 100014. https://doi.org/10.1016/j.urbmob.2022.100014
Unterfinger, M. (2023). hereR: ’Sf’-based interface to the ’HERE’ REST APIs. https://CRAN.R-project.org/package=hereR
Valavi, R., Elith, J., Lahoz-Monfort, J. J., and Guillera-Arroita, G. (2019). blockCV: An r package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models. Methods in Ecology and Evolution, 10(2), 225–232. https://doi.org/10.1111/2041-210X.13107
Valavi, R., Elith, J., Lahoz-Monfort, J., Flint, I., and Guillera-Arroita, G. (2024). blockCV: Spatial and environmental blocking for k-fold and LOO cross-validation. https://CRAN.R-project.org/package=blockCV
Walker, K. (2023). Mapboxapi: R interface to ’mapbox’ web services. https://CRAN.R-project.org/package=mapboxapi
Waller, L. A., and Gotway, C. A. (2004). Applied spatial statistics for public health data. John Wiley & Sons. https://doi.org/10.1002/0471662682
Wang, F., Wang, Y., Zhang, K., Hu, M., Weng, Q., and Zhang, H. (2021). Spatial heterogeneity modeling of water quality based on random forest regression and model interpretation. Environmental Research, 202, 111660. https://doi.org/10.1016/j.envres.2021.111660
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer.
Wickham, H. (2022). Tidyverse: Easily install and load the tidyverse. https://CRAN.R-project.org/package=tidyverse
Wickham, H. (2023). Stringr: Simple, consistent wrappers for common string operations. https://CRAN.R-project.org/package=stringr
Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, K., Wilke, C., Woo, K., Yutani, H., and Dunnington, D. (2022). ggplot2: Create elegant data visualisations using the grammar of graphics. https://CRAN.R-project.org/package=ggplot2
Wickham, H., François, R., Henry, L., Müller, K., and Vaughan, D. (2023). Dplyr: A grammar of data manipulation. https://CRAN.R-project.org/package=dplyr
Wickham, H., Vaughan, D., and Girlich, M. (2023). Tidyr: Tidy messy data. https://CRAN.R-project.org/package=tidyr
Willberg, E., Järv, O., Väisänen, T., and Toivonen, T. (2021). Escaping from cities during the COVID-19 crisis: Using mobile phone data to trace mobility in finland. ISPRS International Journal of Geo-Information, 10(2), 103. https://doi.org/10.3390/ijgi10020103
Wright, M. N., Wager, S., and Probst, P. (2024). Ranger: A fast implementation of random forests. https://CRAN.R-project.org/package=ranger
Wright, M. N., and Ziegler, A. (2017). ranger: A fast implementation of random forests for high dimensional data in C++ and R. Journal of Statistical Software, 77(1), 1–17. https://doi.org/10.18637/jss.v077.i01
Xu, H., Omitaomu, F., Sabri, S., Zlatanova, S., Li, X., and Song, Y. (2024). Leveraging generative AI for urban digital twins: A scoping review on the autonomous generation of urban data, scenarios, designs, and 3D city models for smart city advancement. Urban Informatics, 3(1). https://doi.org/10.1007/s44212-024-00060-w
Xun Li, and Luc Anselin. (2024). Rgeoda: R library for spatial data analysis. https://CRAN.R-project.org/package=rgeoda
Yan, S., Jing, L., and Wang, H. (2021). A new individual tree species recognition method based on a convolutional neural network and high-spatial resolution remote sensing imagery. Remote Sensing, 13(3). https://doi.org/10.3390/rs13030479
Zhou, Y., Zhang, Y., Pang, R., and Xu, B. (2021). Seismic fragility analysis of high concrete faced rockfill dams based on plastic failure with support vector machine. Soil Dynamics and Earthquake Engineering, 144, 106587. https://doi.org/10.1016/j.soildyn.2021.106587