University of Valencia logo Logo Master's Degree in Advanced Physics Logo del portal

Master's degree Final Project proposals 2025-26 (pdf) 

 

CURSO 2025/26
Especialidad  
Física Teórica TEO PROPUESTAS TRABAJO FIN DE MASTER EN FÍSICA AVANZADA (Curso 2025-2026)
Astrofísica ASTRO
Física Nuclear y de Partículas FNyP
Fotónica FOTO
PROPUESTAS TRABAJO FIN DE MASTER EN FÍSICA AVANZADA (Curso 2024-2025)
Núm Tema Tutores Email de contacto Especialidad Breve descripción (máximo 300 caracteres)
1 Searching for dark matter among unidentified gamma-ray sources  Bryan Zaldívar b.zaldivar.m@csic.es ASTRO Dark Matter (DM) can be searched for by measuring the gamma-ray signals from promising astrophysical objects. There are 2000+ unidentified sources as measured by the Fermi-LAT instrument. The project concerns the study of specific DM models for which those sources may be the most sensitive ones.  
2 Implementación en Python de una red química reducida para CO y SiO en explosiones de supernova Michael Gabler, Gerard Navó michael.gabler@uv.es ASTRO Desarrollo de una red reducida de iones y moléculas basada en elementos de la cadena alfa, aplicada a explosiones de supernovas. El resultado será un código Python autónomo capaz de calcular la formación y transiciones de CO y SiO a partir de trayectorias hidrodinámicas.
3 Convective dynamos in proto-neutron stars Miguel Ángel Aloy, Martin Obergaulinger Miguel.A.Aloy@uv.es, martin.obergaulinger@uv.es ASTRO A neutron star acquires its magnetic field during stellar core collapse in a way similar to dynamos in planets and stars. The TFM will analyse three-dimensional simulations to test dynamo theory and establish a relation between convection, rotation and the final magnetic field geometry and strength.
4 Quasinormal modes of neutron stars and black holes through physics-informed neural networks José Antonio Font, Daniela Doneva daniela.doneva@uv.es ASTRO The goal is to explore the physics-informed neural networks as a tool for calculating the quasinormal modes (QNM) of compact objects. The first step will be to review existing results for calculating black hole QNMs and as a second step, a new code for computing the polar and axial oscillation modes of neutron stars will be developed.
5 Building fermion-boson stars with the numerical relativity code GR1D Claudio Lazarte, Nicolás Sanchis-Gual, José Antonio Font claudio.lazarte@uv.es, nicolas.sanchis@uv.es, j.antonio.font@uv.es ASTRO This project will extend the capabilities of the open-source code GR1D by incorporating a complex scalar field. Spherical models of compact fermion-boson stars will be built, using tabulated (microphysical) equations of state.
6 Approaching new challenges (using Machine Learning Techniques) in the search for New Physics in ATLAS t¯t events Santiago González de la Hoz y Jose Francisco Salt Cairols santiago.gonzalez@ific.uv.es y jose.salt@ific.uv.es FNyP This master thesis will approache several challenges at the Frontier of High Energy Physics (HEP), focusing on ttbar resonances at ATLAS experiment (In the LHC collider). In order to improve Missing Energy Transverse (MET) resolution on the dileptonic channel, several Deep Learning architectures will be explored, particularly Multi-Layer Perceptrons on High Level variables and more sophisticated Deep Sets on Low Level variables. The results of such exploration will suggest the need for a deeper dive into Particle Flow-level implementations.
7 Isomers and half-lives beyond N=126 Anabel Morales López aimolo@ific.uv.es FNyP Isomeric gamma-ray spectroscopy with the DTAS total absorption spectrometer. Experiment performed at RIBF-RIKEN (Japan) in November 2024. The work will focus on the study of the conservation of seniority in Pb and Hg nuclei beyond N=126 through isomer decay studies and measurement of nuclear half-lives.
8 Facing new challenges in the search for new physics using machine learning techniques to the ttbar events of the ATLAS experiment' José Francisco SALT CAIROLS and Santiago GONZÁLEZ DE LA HOZ jose.salt@ific.uv.es, sgonzale@ific.uv.es FNyP The objective of this master's thesis is to familiarize students with ATLAS physics, in particular, with the search for New Physics from ttbar events collected in this experiment. We will focus on analyzing the reconstruction performance of the missing transverse energy in all-lepton processes. This will allow us to address improvements in aspects of New Physics such as the separation of ttbar resonance events or quantum entanglement in ttbar systems. We will address this analysis by applying Machine Learning/Deep Learning techniques for both classification and regression.
9 Exploring quantum entanglement and Bell inequalities with LHC top/anti-tops in the ATLAS experiment Susana Cabrera Urbán Susana.Cabrera@ific.uv.es FNyP The ATLAS experiment has recently observed quantum entanglement between the spin states of top and anti-top
quarks at the LHC [Nature 633, 542–547 (2024)]. A breakthrough bridging high-energy physics and quantum
information science. This marks the beginning of a new era, where the challenge ahead lies in pushing experimental limits and testing Bell inequalities.
10 Searching for the neutrinoless double beta decay with the NEXT-100 detector Pau Novella pau.novella@ific.uv.es FNyP Study of the NEXT-100 detector performance during the first months of data taking at 10 bar, devoted to the search of the neutrinoless double beta decay 
11 Medida de las propiedades del bosón de Higgs en el canal de desintegración a cuatro leptones Josu Cantero García y Miguel Villaplana Pérez Miguel.Villaplana@uv.es FNyP El estudiante explorará el LHC y ATLAS, usando datos reales y simulaciones Monte Carlo para estudiar el bosón de Higgs en H→ZZ*→4l, estimar su masa y comparar el comportamiento de los leptones con las predicciones del Modelo Estándar.
12 Range verification in proton therapy with coaxial gamma-ray detectors Fernando Hueso González fernando.hueso@ific.uv.es FNyP Proton therapy is an outstanding technique for cancer treatment, but suffers from inherent range uncertainties. The proposed task is to evaluate the feasibility of monitoring these proton range deviations thanks to prompt gamma-ray detectors located behind the irradiated area, based on Monte Carlo simulations of typical patient treatments.
13 Study of secondary particle effects in nanoparticle-enhanced proton therapy for improved radiation efficacy Nuria Fuster y Marçà Boronat nuria.fuster@ific.uv.es FNyP Studies on the radiosensitizing effect of gold nanoparticles in proton therapy using a simple cellular model in the Monte Carlo Geant4 code. The work focuses on analyzing secondary particle production and implementing models to account for water radiolysis induced by these particles.
14 KM3NeT calibration with Nanobeacons Agustín Sánchez Losa Agustin.Sanchez@ific.uv.es FNyP KM3NeT is a neutrino telescope under construction at two sites in the Mediterranean Sea, each with configurations adapted to different energy ranges, but basically forming three-dimensional arrays of photomultipliers in vertical lines suspended on the seabed.

These sensors critically depend on their temporal calibration in order to reconstruct the Cherenkov light events that occur along the hundreds of meters of the detector. To this end, the detector has numerous optical beacons (called Nanobeacons, powerful LEDs that emit pulsed light) that will allow one of the detector calibrations to be carried out.

With a quarter of the detectors just built and new data in situ plus a completes software suite, the student will be able to carry out some of the first calibrations with KM3NeT Nanobeacons, studying various effects and their impact.
15 Evidence of Quadrupole and Octupole deformations in nuclei: low-energy and ultrarelativistic energies  Jose Javier Valiente Dobon y Damiano Stramaccioni  valiente@ific.uv.es FNyP This project studies octupole (pear-shaped) vibrations in nuclei, focusing on ⁹⁶Zr as a key case, which has attracted a large interest in low-energy as well as in ultra-relativistic heavy-ion collisions. Using AGATA, γ-ray tracking data, the student will analyse lifetimes of vibrational states and learn advanced nuclear data analysis techniques.
16 Gamma spectroscopy a helping hand to neutrino physics Jose Javier Valiente Dobon y Damiano Stramaccioni  valiente@ific.uv.es FNyP This project bridges γ-ray spectroscopy and neutrino physics by studying nuclear matrix elements relevant to double-β and inverse β decays. Can these NMEs can be extracted from γ transitions decaying from isobaric analog states? The student will participate in this experimental endeavour.
17 Shell evolution in calcium isotopes Jose Javier Valiente Dobon y Andrea Gottardo  valiente@ific.uv.es FNyP This project investigates exotic Ca isotopes using the ⁴⁸Ca+²³⁸U reaction where the gamma rays were measured with the gamma-ray tracking array AGATA. By measuring lifetimes of excited states we will explore shell evolution near ⁴⁸Ca. The student will analyse data to extract γ spectra and state lifetimes.
18 Space Weather Monitoring with HENSA++: Analysis of Solar Storm Effects on Cosmic-Ray Neutron Flux Ariel Tarifeño-Saldivia atarisal@ific.uv.es FNyP HENSA++ is a high-efficiency neutron spectrometer for space weather studies (www.hensaproject.org). Operating at Javalambre Observatory since 2024, it detected the May 2025 G4 storm. This TFM project analyzes solar event effects on atmospheric neutron spectra. Students will gain experience in: (1) Forbush Decrease analysis with NMDB/satellite data, (2) Geant4 Monte Carlo simulations, or (3) deep learning for automated real-time event detection.
19 Characterization of irradiated silicon microstrip sensors Urmila Soldevila, Carlos Lacasta carlos.lacasta@ific.uv.es FNyP Caracterización de detectores de silicio irradiados a partir del estudio de la carga depositada por fuentes radioactivas. Se estudiará la eficiencia de recolección y su variación con el voltaje de polarización. El trabajo se hace en el contexto del nuevo detector de trazas ATLAS para el HL-LHC.
20 Caracterización de Módulos para el nuevo tracker de ATLAS Carles Solaz, Carlos Lacasta carlos.lacasta@ific.uv.es FNyP Caracterización de módulos del nuevo detector de trazas ATLAS para el HL-LHC. Se ensamblará la electrónica de lectura al detector de microbandas, se realizarán tests de metrología, inspección visual y eléctricos de dichos módulos. También se estudiará el efecto de ciclos térmicos en los módulos.
21 Caracterización de "petalos" para el nuevo tracker de ATLAS Carles Solaz, Carlos Lacasta carlos.lacasta@ific.uv.es FNyP Los detectores para el nuevo «tracker» de ATLAS para el HL-LHC se montan en una estructura de fibra de carbono llamada pétalo. Hay 18 detectores, 9 por lado, en el pétalo. Se caracterizarán eléctricamente y se les someterá a ciclos térmicos analizando el efecto de la temperatura y los ciclos.
22 Aplicaciones médicas de los aceleradores láesr Jose Benlliure jose.benlliure@csic.es FNyP La posibilidad de acelerar partículas usando láseres compactos de alta potencia va a permitir construir micro-aceleradores con un gran potencial de uso en aplicaciones médicas como la producción de radioisótopos para imagen o tratamiento, radioterapia o nuevas técnicas de imagen por rayos X basadas en el contraste de fase.
23 Estudios de fisión con el experimento R3B de FAIR Jose Benlliure jose.benlliure@csic.es FNyP La fisión de núcleos pesados ricos en neutrones juega un papel fundamental para entender el proceso r de nucleosíntesis que tiene lugar en el colapso gravitaciones de sistemas binarios de estrellas de neutrones. El experimento R3B de la instalación internacional FAIR ofrece la posibilidad de reproducir este proceso en el laboratorio.
24 Higgs physics at the LHC Luca Fiorini fiorini@ific.uv.es FNyP Estudio de la física del bosón de Higgs en el experimento ATLAS mediante análisis de datos reales del Run 3 de LHC y simulaciones. Estudio de los modos de producción y canales de desintegración, su comparación con las predicciones del Modelo Estándar y búsqueda de posibles desviaciones.
25 Optimizing sensor configurations for CEnuNS searches in liquid noble gas detectors Ander Simón Estévez, Gonzalo Martínez Lema ander.simon@ific.uv.es, gonzalo.martinez.lema@ific.uv.es FNyP The COLINA experiment aims to detect CEνNS in noble liquids using silicon photomultipliers (SiPM) to detect light.  The student will characterize and evaluate key attributes of the SiPMs and their role in reconstruction, critical for the success and physics potential of the experiment.
26 Instrumentaiton on novel high granular calorimeter detectors for future Higgs Factories and High Intensity Experiments (such as  LUXE) Adrián Irles / Shan Huang adrian.irles@ific.uv.es FNyP Development and study of high-granularity calorimeter detectors for future Higgs Factories and high-intensity experiments such as LUXE. The work includes assembly, characterization, and performance analysis of silicon-based modules with advanced readout electronics.
27 Machine Learning and AI Techniques for Feebly Interacting Particle and Dark Matter Searches in LUXE-NPOD Adrian Irles / Shan Huang adrian.irles@ific.uv.es FNyP Development and application of advanced AI-based algorithms for the LUXE-NPOD experiment, dedicated to the search for feebly interacting particles and dark matter. The work includes simulation studies, data analysis, and optimization of event selection strategies.
28 Electron reconstruction in a 10 TeV muon collider Ximo Poveda joaquin.poveda@ific.uv.es FNyP One of the proposed next accelerators after the LHC is a muon collider with ~10 TeV center of mass energy. Using the latest muon collider simulations, this masters project will focus on developing reconstruction algorithms for electrons, key elements in the study of electroweak and Higgs physics. 
29 Exploring quantum entanglement and Bell inequalities with LHC top/anti-tops in the ATLAS experiment Susana Cabrera Urbán & Carlos Escobar Ibáñez susana.cabrera@ific.iv.es FNyP The ATLAS experiment has recently observed quantum entanglement between the spin states of top and anti-top quarks at the LHC [Nature 633, 542–547 (2024)]. A breakthrough bridging high-energy physics and quantum information science. This marks the beginning of a new era, where the challenge ahead lies in pushing experimental limits and testing Bell inequalities.
30 Search for dark showers with BuSca at the LHCb experiment at CERN    Arantza Oyanguren, Jiahui Zhuo.  Arantza.Oyanguren@ific.uv.es FNyP This TFM will be developed inside the LHCb experiment at CERN, using a pioneering framework developed at IFIC called BuSca (Buffer Scaner). The project aims to discover new long-lived particles which could help to explain the unknowns of the Standard Model of particle physics. A new theory concerning dark showers (cascades of particles produced within what is called a hidden sector, which interact weakly or not at all with the Standard Model) can be investigated using BuSca. In this TFM we will study which observables can be implemented to detect them, and will perform sensitivity studies inside the LHCb experiment.     
31 Characterization of the Gamma-Neutron Vision (GN-Vision) device: a versatile detector for medical and nuclear applications Jorge Lerendegui Marco jorge.lerendegui@ific.uv.es FNyP GN-Vision is a innovative dual g-ray and neutron imaging system of great interest for applications in hadrontherapy and nuclear waste characterization. This thesis will focus on the characterization and data analysis of the first prototype of GN-Vision. The student will also perform Geant4 simulations of the potential of GN-Vision in relevant scenarios.
32 Quark masses and the Higgs boson Marcel Vos, Maria Moreno Llacer, Juan Ramirez marcel.vos@ific.uv.es FNyP This project studies the bottom quark mass at the Higgs boson scale as a precision test of the Standard Model. It explores a method using LHC measurements of Higgs decays to b-quark pairs and evaluates whether both the b-quark mass and its coupling to the Higgs can be measured simultaneously."
33 Searching for golden physics topologies in the DUNE prototypes at CERN Anselmo Cervera, Jordi Capó acervera@ific.uv.es FNyP The Deep Underground Neutrino Experiment (DUNE) is a leading international project in neutrino science and proton decay studies, aimed at addressing several fundamental questions about the nature of matter and the role of neutrinos in the universe. A beam of neutrinos will be sent from Fermilab (USA) to a large-scale detector located more than a kilometer underground at the Sanford Underground Research Laboratory in Lead, South Dakota, 1300 kilometers downstream of the neutrino source. Large-scale prototypes of this detector have been operated at CERN over the past two years, being exposed to a charged-particle test beam. The proposed research project consists of analyzing these data to benchmark the detector performance and to search for interesting physics channels. Advanced analysis techniques will be employed to isolate the desired event topologies and signal patterns. More information can be found at https://neutrinos.ific.uv.es/index.php/research/experiments/dune/
34 Optimization of photon detectors for the DUNE experiment  Anselmo Cervera, Justo Martín-Albo acervera@ific.uv.es, jmalbos@ific.uv.es FNyP The Deep Underground Neutrino Experiment (DUNE) is a leading-edge international experiment for neutrino science and proton decay studies, aimed at answering several fundamental questions about the nature of matter and the role of neutrinos in the universe. A beam of neutrinos will be sent from Fermilab (US) to a giant scale detector, installed more than a kilometer underground at the Sanford Underground Research Laboratory (Lead, South Dakota), 1300 kilometers downstream of the neutrino source. The Far Detector, based on the Liquid Argon TPC technology, will be instrumented with a complex photon detection system to capture the scintillation light emitted by fundamental particles. The student will participate in the optimization of photon detectors using sophisticated simulations developed at IFIC and experimental measurements in our optical laboratory (https://neutrinos.ific.uv.es/index.php/about/our-laboratories/)
35 Measurement of the efficiency of photon detectors for the DUNE experiment Anselmo Cervera, Nadia Yahlali acervera@ific.uv.es, nadia.yahlali@ific.uv.es FNyP The Deep Underground Neutrino Experiment (DUNE) is a leading-edge international experiment for neutrino science and proton decay studies, aimed at answering several fundamental questions about the nature of matter and and the role of neutrinos in the universe. A beam of neutrinos will be sent from Fermilab (US) to a giant scale detector, installed more than a kilometer underground at the Sanford Underground Research Laboratory (Lead, South Dakota), 1300 kilometers downstream of the neutrino source. The Far Detector (FD) based on the Liquid Argon TPC technology, will be instrumented with a complex photon detection system to capture the scintillation light emitted by fundamental particles. The student will work on understanding the light collection efficiency of the proposed system using a novel setup developed at IFIC. This setup employs a tunable-wavelength light beam (110–550 nm) produced by a monochromator, which is coupled to a large aluminum chamber filled with an argon gas atmosphere to prevent the absorption of vacuum ultraviolet (VUV) light  (https://neutrinos.ific.uv.es/index.php/about/our-laboratories/).
36 Materials under pressure Daniel Errandonea daniel.errandonea@uv.es FOTO The master's project involves exploring new materials using diamond anvil cells to study their properties under extreme pressure conditions using techniques like X-ray diffraction, optical absorption, electron microscopy, and Raman spectroscopy for material analysis.
37 Pulse propagation in topological photonic crystals Albert Ferrando Cogollos albert.ferrando@uv.es FOTO Photonic crystals are periodic dielectric structures with exceptional properties that allow the control of the flow of light in multiple ways, similar to how electronic crystals control electrical currents. Very recently, it has been shown that a particular form of photonic crystals gives rise to a new panoply of phenomena that mimic the behavior of electrons in a new type of insulating materials whose properties are based on subtle mechanisms of topological origin, called topological insulators. These new photonic structures are known as topological photonic insulators and can be considered a new type of photonic crystal with finely tuned geometries that emulate their electronic counterparts. They permit new forms of localization and propagation of light not achievable in conventional photonic devices. Due to the novelty of this new category of photonic structures there are still interesting aspects to explore, particularly those related to the propagation of optical pulses

The objective of this proposal is to analyze the behavior of optical pulse propagation in certain types of one-dimensional topological photonic crystals with unconventional dispersion properties. This study will use a rich combination of analytical and numerical techniques to reveal the most interesting properties of pulse evolution in these structures. These tools are closely related to those presented to students in different subjects in the Photonics track of our Master's Degree in Advanced Physics. Therefore, this master's thesis proposal can be an excellent introductory means to develop more in-depth research in the very active area of Topological Photonics or in analogous areas, such as Topological Insulators in Condensed Matter Physics.

 
38 Disentangling Electronic properties of layered quantum materials by photoemission Juan Francisco Sánchez Royo Juan.F.Sanchezuv.es FOTO The electronic band structure rules the fundamental and exotic phenomena occuring in matter, such as charge transport, magnetism, superconductivity, etc. In this proposal, we will investigate the electronic properties of layered materials and related devices with potential applications in quantum transport with low energy consumption.
39 Lattice dynamics of the crystal phases of chromium disulfide (CrS2) Andrés Cantarero Sáez andres.cantarero@uv.es FOTO Transition metal dichalcogenides have emerged as a class of materials exhibiting rich structural, electronic, and magnetic properties. Despite the growing interest in Cr-based dichalcogenides, the phonon spectra and dynamical stability of the different CrS2 crystal phases remain insufficiently characterized.
40 Exploring Magnon Dynamics in the Two-Dimensional Ferromagnet Fe2GeTe2 Andrés Cantarero Sáez andres.cantarero@uv.es FOTO This project investigates magnon excitations in the layered ferromagnet Fe2GeTe2, aiming to understand their dispersion, lifetime, and interaction with electronic states. By combining experimental and theoretical approaches, it seeks to advance spintronic applications in 2D magnetic systems.
41 Magneto-optical Kerr effect in 2D van der Waals magnetic materials Daniel Hernangómez Pérez & Alejandro Molina Sánchez d.hernangomez@nanogune.eu FOTO 2D van der Waals magnetic materials are emerging as a promising platform for quantum photonics and energy-efficient optoelectronic devices. These materials exhibit tunable magnetic orders, including in-plane ferromagnetism and layered antiferromagnetism, which strongly influence their optical properties. In this project, we will perform ab initio simulations to investigate the electronic structure and magneto-optical response of some 2D magnetic materials, focusing in particular on the Kerr effect for selected 2D monolayers. The aim is to analyze how different magnetic configurations affect the Kerr effect, providing insights relevant for the design of next-generation quantum photonic devices. This theoretical project allows the student to gain hands-on experience with state-of-the-art computational tools that allow to perform such simulations. This project is in collaboration with CIC nanoGUNE (Donostia/San Sebastián).
42 Microscopic Modeling of Excitonic Dynamics in 2D Materials: Connecting Theory and Time-Resolved ARPES Alejandro Molina Sánchez alejandro.molina@uv.es FOTO Este proyecto usaremos métodos de primeros principios para describir la dinámica ultrarrápida de excitones en materiales bidimensionales, con el objetivo de interpretar teóricamente experimentos de fotoemisión resuelta en el tiempo (TR-ARPES).
43 Molecular Engineering of Defects in Inorganic Perovskites: An Ab Initio Approach for Optoelectronic Applications Alejandro Molina Sánchez alejandro.molina@uv.es FOTO El proyecto se basa simulaciones ab initio para estudiar cómo la adsorción e interacción de moléculas en defectos en perovskitas inorgánicas con el objetivo de optimizar su rendimiento en dispositivos optoelectrónicos.
44 Estudio de la carga en materiales dieléctricos para aplicaciones espaciales Rafael Mata Sanz rafael.mata@uv.es FOTO La emisión secundaria de electrones es una propiedad de los materiales de suma importancia en telecomunicaciones espaciales. Sin embargo, en materiales dieléctricos aparecen efectos de carga que pueden hacer perder la señal con el satélite. Se propone, el estudio y control de la carga en dieléctricos usados en aplicaciones espaciales en el laboratorio de materiales de la ESA.  
45 Microscopía 3D con enfoque electrónico  Manuel Martínez Corral manuel.martinez@uv.es FOTO Implementación y caracterización de un microscopio 3D basado en la inserción de una lente sintonizable electrónicamente. Este dispositivo permite la captura de ultrarrápida de pilas de imágenes focales, partir de las cueles se genera computacionalmente un volumen focal. de alta resolución.
46 Diseño, simulación y caracterización de cavidades verticales que contienen perovskitas semiconductoras Albert Ferrando and Isaac Suárez (ICMUV) albert.ferrando@uv.es FOTO En el presente Trabajo Final de Máster (TFM) se propone que el/la estudiante diseñe, simule y caracterice experimentalmente cristales fotónicos unidimensionales para que actúen como cavidades ópticas en la región del visible. Para ello, se utilizarán elegirán los espesores adecuados de estructuras multicapa de diferentes materiales dieléctricos que permitan tener resonancias longitudinales en diferentes regiones del espectro visible. Asimismo, se estudiará la integración de perovskitas semiconductores para actúen como material activo dentro de la estructura, y las condiciones para las cuales la emisión pueda acoplarse al modo de la cavidad, lo que puede dar lugar a diferentes efectos, como por ejemplo el efecto Purcell o la emisión láser. Los dispositivos diseñados serán fabricados con la infraestructura disponible en el Instituto de Ciencia de los Materiales (ICMUV) y serán caracterizados experimentalmente, determinando, entre otros parámetros, su espectro de reflexión/transmisión, el tiempo de vida de los fotones en la cavidad, la dispersión angular y la emisión en función de la potencia.
47 Difracción de rayos X en grandes instalaciones de radiación sincrotrón Dr. Simone Anzellini and Prof. Daniel Errandonea simone2.anzellini@uv.es FOTO Un sincrotrón es una instalación que acelera partículas elementales cargadas y  produce haces de radiación electromagnética tan intensa que se puede focalizar y/o monocromatizar e incrementar su intensidad un millón de veces o más. Ese haz se puede emplear para diferentes aplicaciones en la ciencia, la técnica, la industria, la agricultura, incluso la historia y el patrimonio cultural, etc. En este trabajo se propone estudiar cómo funciona un sincrotrón y los detalles de una línea dedicada a experimentos de difracción de rayos X (30 horas). Estudiar ejemplos del empleo de un sincrotrón para caracterizar las propiedades estructurales de metales bajo altas presiones (20 horas). Analizar resultados de experimentos de difracción de rayos X y usarlos para determinar la ecuación de estado presión-volumen (30 horas). Realizar una visita con alguno de los tutores al sincrotrón ALBA para participar en un experimento (30 h). Escritura del trabajo de grado y preparación de la presentación (40 horas).
48 Electron beam interactions with CNT nanowires Javier Resta López; Jorge Giner-Navarro javier2.resta@uv.es FOTO Due to their unique geometry and exceptional electro-optical and thermo-mechanical properties, carbon nanotubes (CNTs) have found applications across various scientific and technical fields. Recently, they have garnered attention in particle accelerator physics, where CNT arrays show promise for beam manipulation and acceleration. Preliminary studies suggest that relativistic, subpicosecond electron bunches interacting with aligned, conductive CNT arrays could excite surface plasmonic modes and generate longitudinal electric gradients as high as 100 TV/m. This breakthrough could pave the way for cost-effective, ultra-compact accelerators and light sources. However, there is limited data on ionization effects, material damage, and the thermo-mechanical behavior of CNT arrays when exposed to relativistic electron beams. In this project, we aim to investigate these phenomena using a computational model, exploring various beam configurations available at existing experimental facilities.
49 Electro-optical properties of bidimensional semiconductors Núria Garro and Ana Cros nuria.garro@uv.es,ana.cros@uv.es FOTO This TFM project aims at the experimental investigation of the electro-optical properties of 2D semiconductors by means of co-localized optical and scanning probe microscopies. These techniques provide complementary characterization which can be correlated the layer thickness. 
50 Optical Spectroscopy of Two-dimensional Materials Andres Granados del Aguila andres.granados@uv.es FOTO Next technological revolution relies on the realization and manipulation of quantum degrees of freedom at room temperature. In this regard, layered materials hold great potential for advanced optoelectronic applications. Using the straightforward yet famous “scotch tape method”, single atomically-thin layers can be obtained. Beyond graphene, the first isolated two-dimensional (2D) material, many other layered materials exhibits striking optoelectronic properties.

In this project, we are looking for highly motivated students to investigate light-emission phenomena in atomically thin layers of transition metal dichalcogenides (TMDs). Monolayer TMDs provide an unprecedented platform where exotic light-matter interactions and quantum phenomena become accessible under everyday conditions. For example, monolayer TMDs exhibit strong light absorption and emission at room temperature, arising from tightly bound electron–hole pairs (excitons). These tiny excitons display ultrafast dynamics as well as nonlinear optical and transport properties that could pave the way for advanced device functionalities.

The main goal of this master project is to investigate the dynamical response of excitons in 2D materials, enabling the student to develop advanced expertise in optical spectroscopy and ultrafast measurement techniques. In addition, the project offers a comprehensive training, from hands-on advance quantum materials fabrication to programming. The project is ideal for students eager to dive into cutting-edge quantum semiconductor research.
51 Impact of optical pulse asymmetries on the measurement of high-order dispersion in nonlinear fibers David Castelló Lurbe & Enrique Silvestre david.castello-lurbe@uv.es FOTO Large spectral bandwidths are so far necessary to measure high-order dispersion. However, the dispersion-to-spectrum mapping, recently demonstrated experimentally, could relax significantly the bandwidth requirement for such a measurement. This work proposes to explore this possibility theoretically.
52 Cancellation of vector modulation instability through nonlinearity multifrequency dispersion David Castelló Lurbe & Enrique Silvestre david.castello-lurbe@uv.es FOTO Scalar modulation instability has recently been suppressed exploiting the dispersion of nonlinearities in regimes that had been considered intrinsically unstable for years. This work proposes to extend this study to the vector case while accounting for the multifrequency nature of nonlinearities dispersion. 
53 Luz y magnetismo entrelazados: explorando el altermagnetismo en materiales bidimensionales Amilcar Bedoya, Rosa Córdoba amilcar.bedoya@uv.es FOTO Los materiales magnéticos en el límite de la bidimensionalidad ofrecen un escenario excepcional para estudiar la interacción entre la luz, el espín y la estructura cristalina. Entre ellos, el fluoruro de manganeso (MnF₂) destaca como un sistema modelo, cuyo carácter antiferromagnético y su acoplamiento espín-red lo sitúan en el centro del interés actual por los denominados altermagnetos, materiales que combinan simetría antiferromagnética y respuesta macroscópica al campo externo.
 
Este Trabajo de Fin de Máster propone investigar el comportamiento altermagnético del MnF₂ crecido por epitaxia de haces moleculares en el límite de la bidimensionalidad, utilizando una combinación de técnicas ópticas y magnéticas avanzadas. Se realizarán medidas de susceptibilidad magnética para determinar la temperatura de Néel y los posibles momentos magnéticos residuales, junto con espectroscopía Raman a temperatura ambiente y a baja temperatura, con el objetivo de analizar el acoplamiento fonón-espín y cómo la reducción dimensional modifica la interacción entre orden magnético y vibraciones de red.
54 Fotodetectores basados en perovskitas 2D Juan P. Martínez Pastor juan.mtnez.pastor@uv.es FOTO El objetivo principal del trabajo de fin de master propuesto sería la fabricación de fotodetectores basados en perovskitas 2D de estaño (TEA2SnI4 o similar) y su caracterización optoelectrónica (curvas I-V, iluminación a diferentes potencias, responsividad, detectividad, tiempo de respuesta, espectroscopia de fotoluminiscencia). Se valorará la posibilidad de detección indirecta de rayos X.
55 De la luz al calor: explorando las propiedades ópticas en materiales termoeléctricos Andrés Cantarero, Rosa Córdoba Andres.Cantarero@uv.es; rosa.cordoba@uv.es FOTO Los compuestos tipo tetrahedrita Cu₁₂(Zn)Sb₄(Bi)S₁₃ constituyen una prometedora familia de materiales sostenibles para aplicaciones termoeléctricas, gracias a su baja conductividad térmica y su estabilidad química. Recientes estudios realizados en el grupo han permitido optimizar su dopaje, mejorando notablemente las propiedades de transporte eléctrico y térmico. Sin embargo, la comprensión de los procesos ópticos y vibracionales que gobiernan su comportamiento electrónico a distintas temperaturas sigue siendo limitada.
Este Trabajo de Fin de Máster se centrará en el estudio de las propiedades fotónicas de estos materiales, analizando la evolución con la temperatura de sus modos vibracionales y del ancho de banda prohibida mediante espectroscopías Raman y de fotoluminiscencia. Estas técnicas ópticas permitirán correlacionar los cambios estructurales y electrónicos con las propiedades termoeléctricas previamente optimizadas, proporcionando información esencial sobre la interacción fonón–fotón y las transiciones electrónicas dominantes.
El trabajo combinará aspectos experimentales y analíticos: adquisición de espectros Raman y PL en un amplio rango de temperaturas, ajuste de los modos fonónicos activos, determinación del band gap y análisis comparativo con cálculos de estructura electrónica disponibles en la literatura.
56 Laser-induced metallization by chemical liquid phase deposition (LCLD) Jose Marques Hueso jose.marques@uv.es FOTO Laser techniques are crucial in the manufacturing, for example, to deposit electrical contacts in microelectronics or solar technologies. Here we will use LCLD to create metallic tracks of different metals at the microscale. We will study the effect of the parameters (power, temperature, composition…) on the morphology and resistance of metal structures.
57 The ghost sector of QCD Joannis Papavassiliou joannis.papavassiliou@uv.es TEO The procedure of quantization in covariant gauges is inextricably connected with the appearance of the so-called "ghost" fields, which are spin zero particles that obey Dirac statistics. The description of such fields is implemented through  the introduction of Grassmann variables, and the specifics of the quantization are known as the Faddeev-Popov Ansatz. The presence of the ghosts has profound implications for the economy of the theory, assuring, among others, the unitarity and the renormalizability . The proposal focuses on studying in detail the ghost sector, and understanding the most characteristic aspects of the dynamics associated to it.   
58 Dark Monopoles Vicente Vento vicente.vento@uv.es TEO Monopoles have been a subject of much theoretical and experimental research since they were proposed to symmetrize Maxwells equations. However, no experimental signature of their existence has been detected. Many mechanisms have been proposed to explain this lack of success. In here we generalize QED to a two photon theory where the magnetic photon and the monopole belong to dark matter. A naive mixing interaction produces duality and generates experimental consequences for indirect monopole detection via the magnetic
charge of the electron or the electric charge of the monopole. The thesis will investigate some of these experimental scenarios.
59 Higgs mediated dark Showers José Zurita jzurita@ific.uv.es TEO  A strongly interacting dark sector can give rise to ``dark showers,'' akin to parton showers in QCD. This project aims to study the dark showers mediated by a heavy scalar that can mix with the SM Higgs, paying special attention to the parameter space to be explored in the next run of the LHC.
60 Angular response of resonant cavities to gravitational waves Camilo Alfredo García Cely  camilo.garcia@ific.uv.es TEO The project will focus on the analytical study of how resonant cavities can act as detectors for gravitational waves, emphasizing their angular response and antenna pattern. It will develop theoretical models describing the excitation of electromagnetic modes by gravitational perturbations and analyze how these effects vary with the direction and polarization of the incoming waves. The formalism will rely on spherical harmonics to characterize the angular dependence and to derive analytical expressions for the coupling efficiency between gravitational and electromagnetic modes. The study aims to identify measurable signatures and establish a rigorous theoretical framework to guide the design and interpretation of future cavity-based gravitational wave detection experiments.
61 Line-shining-through-a-wall from spin-2 particles at ALPs II  Camilo Garcia Cely  camilo.garcia@ific.uv.es TEO “Light-shining through a wall” (LSW) refers to an experimental scheme in which photons convert into a new weakly interacting particle (such as an axion or axion-like particle) before a barrier, traverse the barrier unimpeded, and reconvert back into photons behind the barrier. In the ALPS II experiment at DESY, this technique is used to search for light bosons like ALPs by using high-finesse optical cavities on both sides of an opaque wall to amplify conversion and reconversion rates.  

In this project we generalize the LSW concept to spin-2 particles (tensor modes). Photons could convert into spin-2 particles (which may be related to graviton modes, Kaluza-Klein gravitons in extra-dimensional theories, or other tensor excitations). These spin-2 modes traverse the barrier and then reconvert back into photons. This opens a channel of “line-shining through a wall” mediated by tensor couplings.
62 Neutrino Fog: A Gateway to New Physics Martín González Alonso y Sergio Palomares martin.gonzalez@ific.uv.es, Sergio.Palomares.Ruiz@ific.uv.es TEO The first measurements of the so-called neutrino fog (nuclear recoils induced by solar neutrinos) have been recently reported. This project will study how to use this measurement, in a very simplified setup, to probe non-standard interactions.
63 Gravitational interactions from scattering amplitudes in high-energy colliders Germán RODRIGO german.rodrigo@csic.es TEO Recently, powerful Quantum Field Theory techniques, originally developed to predict observables in high-energy colliders, have been applied to describe classical observables relevant to gravitational wave physics. This has motivated a proliferation of approaches to extract classical information from quantum scattering amplitudes. These investigations suggest that the basis of the dynamics of General Relativity is Yang-Mills theory. The project consists in determining the deflection of light by a massive spinless/spinning object using the novel Worldline Quantum Field Theory (WQFT) formalism for classical scattering.
64 Efficient Quantum Simulation of Lattice Gauge Theories with Improved Hamiltonians Wanqiang Liu and Manuel Gessner manuel.gessner@uv.es TEO We will benchmark improved Hamiltonians for Z_2 lattice gauge theory, which reduce qubit needs by a factor 2^d, offering an advantage in the NISQ era. By fixing gauge redundancy and testing on available quantum computers we aim to optimize resources and guide realistic lattice simulations.
65 Coherent elastic neutrino-nucleus scattering and direct dark matter detection Valentina De Romeri deromeri@ific.uv.es TEO Coherent elastic neutrino-nucleus scattering (CEvNS) is a neutral-current process where a neutrino interacts coherently with an entire nucleus. It offers a sensitive test of the Standard Model and a probe for new physics. Since its signals mimic those from dark matter, understanding CEvNS is essential for advancing future direct dark matter searches.
66 The study of emergence Veronica Sanz veronica.sanz@uv.es TEO Emergence means that when many simple units interact, new collective patterns or “laws” appear at the macroscopic level that are not obvious from the microscopic rules. Emergence is central to how physicists think about complex systems. Many-body systems can display coherent patterns (flocks, lanes, waves) even when each unit follows only primitive rules. This “order from simple rules” is a clean playground for emergence, coarse-graining, and the spirit of effective theories: macroscopic descriptors (order parameters, correlation lengths) summarize vast microscopic detail. You’ll implement a minimal flocking model and measure how global order “turns on” as parameters vary—analogous to a phase transition.
67 Development of a neutrino evolution simulation and data analysis framework Roberto Ruiz de Austri rruiz@ific.uv.es TEO The project will entail the development of a software for the efficient computation of neutrino production and evolution, focusing on the implementation of models that simulate the atmospheric neutrino production, their evolution while propagating and the resulting neutrino spectra expected at a generic neutrino detector. It will require to account for non-linear dynamics such as the neutrino oscillation in matter and their absorption while crossing the Earth, using preferably semi-analytic algorithms to achieve high numerical efficiency. The resulting software will be employed to perform statistical analyses of real data of atmospheric neutrino events from the IceCube experiment.
68 "Goofy" symmetries Miguel Nebot Gómez Miguel.Nebot@uv.es TEO In 2023 relations among parameters of 2 Higgs doublets potentials were shown to be stable under renormalization group evolution, despite not corresponding to the known symmetries of such models. "Goofy" transformations can explain that fact. The goal is to study them, and additional applications.
69 Peccei-Quinn symmetries and axion phenomenology.  Oscar Vives, Marco Ardu oscar.vives@uv.es TEO One of the mysteries of the SM is the absence of the theta term in the Lagrangian, allowed to be O(1), but constrained to $<10^{-10}$ by EDM limits. The Peccei–Quinn mechanism dynamically relaxes this angle to zero and predicts a light pseudo–Goldstone boson, the axion, whose phenomenology we plan to study.
70 Factorisation Violation Leandro Javier Cieri lcieri@ific.uv.es TEO We study QCD factorisation breaking by analysing the soft-gluon current at tree-level up to N4LO. This novel approach probes the limits of standard perturbative assumptions, providing new insights into the all-order structure of QCD scattering amplitudes.
71 Electroweak corrections for LHC phenomenology Leandro Cieri lcieri@ific.uv.es TEO We propose to augment the DYTurbo code by incorporating the most advanced electroweak (EW) corrections for Drell-Yan, Higgs, and top-quark pair production. This combination with high-order QCD effects will provide the new benchmark for theoretical predictions at the LHC.
72 Singular limits in MultiHiggs scalar potentials Miguel Nebot Gómez Miguel.Nebot@uv.es TEO In MultiHiggs scalar sectors shaped by some discrete symmetry, (i) assuming an invariant vacuum or (ii) alternatively approaching that symmetric regime, can yield very disparate properties (e.g. mass spectra). The goal of this proposal is to explore that kind of situation and its consequences.
73 Proton decay from leptoquarks Claudia Hagedorn claudia.hagedorn@ific.uv.es TEO The possibility of proton decay in extensions of the Standard Model is studied. In particular, proton decay channels induced by leptoquarks are considered. These are scalar or vector particles that couple to leptons and quarks. Options to constrain the couplings with new symmetries are explored.
74 Estados de Efimov en un sistema de tres mesones encantados Raquel Molina Peralta Raquel.Molina@ific.uv.es TEO Cuando dos partículas pueden interaccionar dando lugar a una resonancia debido a fuerzas de atracción de corto alcance dentro del sistema de tres cuerpos, puede tener lugar el fenómeno llamado efecto Efimov, que fue descrito por primera vez en la década de 1970, en donde surgen un número infinito de estados ligados de tres cuerpos. En este TFM proponemos estudiar la interacción de tres mesones D* y como esta puede dar lugar a estados de Efimov. [1] V. Efimov, Phys. Lett. 33B, 563 (1970).V. Efimov, Nat. Phys. 5, 533 (2009). Physical Review D 110, 034015 (2024).
 
75 Buscando materia oscura ligera en el sector escalar Emilie Passemar emilie.passemar@ific.uv.es TEO En este trabajo comprobaremos la existencia de nuevas partículas escalares ligeras. La introducción de nuevas partículas de este tipo permite responder a ciertas preguntas abiertas en cosmología, como por ejemplo la existencia de materia oscura o la inflación.
Sin embargo, la desintegración de estas partículas escalares con energías del orden de GeV es muy difícil de abordar, ya que implica tratar la interacción fuerte a baja energía en su régimen no perturbativo. En este trabajo nos proponemos mejorar los modelos de desintegración de estos escalares en hadrones utilizando métodos dispersivos. A continuación, intentaremos encontrar o restringir estas nuevas partículas utilizando los resultados experimentales existentes. 
77 Resolución de teorías de campos escalares con acoplamiento cuártico mediante redes neuronales Noemi Rocco, Alessandro Lovato rocco@ific.uv.es TEO El objetivo principal de este trabajo es emplear un ansatz basado en redes neuronales para obtener cotas superiores variacionales coherentes con los resultados perturbativos en teorías de campos escalares en dimensiones d=0+1y d=3+1, y para distintos valores del acoplamiento λ. El proyecto también contempla como objetivos adicionales el cálculo de autovalores por encima del estado fundamental y la aplicación de este enfoque a otras teorías de campos cuánticos. 
78 Resource Theories in Quantum Information Science Manuel Gessner manuel.gessner@uv.es TEO Quantum resource theories provide a unified framework to understand which properties make certain tasks in quantum information possible. This project explores how state conversions relate to work extraction, revealing links between thermodynamics and quantum technology.