GIUV2013-087
The generic field of work is complex analysis in finite and infinite dimension. In a complex variable Dirichelt series. In several variables Borh radii. In infinite dimension linear theory, multilinear theory, local theory and geometry of Banach spaces, ideals of polynomial spaces and the study of algebras and Banach spaces of differentiable functions and their transformations.
- Estudio de espacios de Hardy en el politoro infinito dimensional y su relacion con espacios de Series de Dirichlet
- Complex analysis in several and inifinite dimensions.Properties of holomorphic functions and Banach spaces and algebras whose elements are these functions are studied.
- Linear and multilinear mappings.Properties of bounded operators between Banach spaces are studied, as well as multilinear applications and polynomials in Banach spaces and the spaces formed by these applications.
- Time-frequency analysis, location operators, Stockwell transform and applications.The study of pseudo-differential operators with time-frequency analysis methods.
Name | Nature of participation | Entity | Description |
---|---|---|---|
MANUEL MAESTRE VERA | Director | Universitat de València | |
Research team | |||
DOMINGO GARCIA RODRIGUEZ | Member | Universitat de València | |
MARIA CARMEN FERNANDEZ ROSELL | Member | Universitat de València | |
ANTONIO GALBIS VERDU | Member | Universitat de València | |
MARIA PILAR RUEDA SEGADO | Member | Universitat de València | |
FRANCISCO JAVIER FALCO BENAVENT | Member | Universitat de València | |
PABLO SEVILLA PERIS | Collaborator | Universitat Politècnica de València | tenured university professor |
- -
- Mathematical Analysis
- Función holomorfa, diferenciabilidad, polinomios, álgebras de Banach, Series de Dirichlet
- Operador acotado, aplicacación multilineal, polinomio, espacio de Banach, geometría de espacios de Banach
- operadores pseudodiferenciales, transformada de Stockwell, operadores pseudodiferenciales