GIUV2019-459
The Materials Technology and Sustainability Research Group (MATS) of the Department of Chemical Engineering of the Universitat de València focuses its research activity on the design, development, characterisation and validation of technologies for the preparation and functionalisation of materials with a multi-sectoral character, and with a focus on sustainability within the concept of circular economy. MATS' lines of work include:
the development of technologies for obtaining and functionalising (nano/micro) polymeric fibres and films, composites and hybrids, and their transfer to industrial sectors based on membrane technology: effluent treatment, packaging and biomedicine, among others;
research into the correlation between the physico-chemical properties of polymeric and hybrid materials and their performance in service conditions, aimed at design re-engineering;
the evaluation of alternatives for the material, chemical, energy and biological recovery of plastic waste, under the concept of circular economy and the use of bio-resources;
the development of advanced reaction techniques using supercritical fluids or emerging solvents to obtain polymers of interest; and...The Materials Technology and Sustainability Research Group (MATS) of the Department of Chemical Engineering of the Universitat de València focuses its research activity on the design, development, characterisation and validation of technologies for the preparation and functionalisation of materials with a multi-sectoral character, and with a focus on sustainability within the concept of circular economy. MATS' lines of work include:
the development of technologies for obtaining and functionalising (nano/micro) polymeric fibres and films, composites and hybrids, and their transfer to industrial sectors based on membrane technology: effluent treatment, packaging and biomedicine, among others;
research into the correlation between the physico-chemical properties of polymeric and hybrid materials and their performance in service conditions, aimed at design re-engineering;
the evaluation of alternatives for the material, chemical, energy and biological recovery of plastic waste, under the concept of circular economy and the use of bio-resources;
the development of advanced reaction techniques using supercritical fluids or emerging solvents to obtain polymers of interest; and
the design of nanostructured catalysts using electrochemical techniques for the preparation of hybrid membranes. MATS is made up of a multidisciplinary team, with expertise in (bio)polymer and composite technology, advanced reaction processes with sustainable emerging solvents, hybrid catalyst generation for environmental technologies and corrosion control techniques. In this way, they are able to address the challenges of industries and institutions committed to sustainable innovation in environmentally efficient and value-added products and processes. MATS is also committed to the transfer of research and innovation results to society, by means of
the training of qualified professionals in a scientific-technological and international environment, through internships, academic stays and the development of doctoral and master's theses;
the preparation of specialised training courses and workshops in the field of sustainability and the circular economy of materials;
dissemination in general and specialised environments and
collaboration in networks and technological platforms for the development of Research, Development and Innovation projects.
[Read more][Hide]
[Read more][Hide]
- Desarrollar tecnologias de obtencion y funcionalizacion de (nano/micro) fibras y films polimericos, compuestos e hibridos.
- Investigar la correlacion entre las propiedades fisico-quimicas de los materiales polimericos e hibridos y sus prestaciones en condiciones de servicio.
- Desarrollar procesos de biorefineria de material lignocelulosico para la obtencion de materiales funcionalizados.
- Evaluar las alternativas de valorizacion material, quimica, energetica y biologica de los residuos de origen plastico.
- Desarrollar tecnicas de extraccion y reaccion avanzada mediante fluidos supercriticos o liquidos ionicos, como soporte a los procesos de purificacion y polimerizacion.
- Diseñar, operar y optimizar dispositivos para la optimizacion de procesos en tecnologia de membranas para aplicaciones medioambientales.
- Establishment of biorefinery processes for lignocellulosic biomass fractionization into valuable biomolecules.Design and implementation of industrially scalable methods involving resource-efficient and low environmental impact technological approaches to deconstruct biomass, allowing its comprehensive fractionation into functional molecules and macromolecules.
- Design biological structures with targeted properties from residual biomass for food applications (packaging and food ingredients).To demonstrate and validate the use of lignocellulosic biomass as a raw material to develop biobased functional products that are competitive with fossil-based plastics and additives for packaging and barrier coatings, and with animal-based food ingredients.
- Membrane contactors for the dissolved methane recovery from bioreactor effluents..Evaluation and optimisation of operating conditions and membrane properties in the recovery of dissolved methane in aqueous effluents from industrial treatment bioreactors or wastewater treatment plants (WWTP).
- Membrane technology for decarbonization of atmospheric emissions.Evaluation and optimisation of operating conditions and membrane properties in the operation of separation of carbon dioxide from emissions to the atmosphere, especially for biogas enrichment.
- Design and validation of polymer materials and composites for technology of membranes.Technology for the design of functionalised polymers and composites for the development of membranes in flat or fibre format. Control of parameters such as pore size, wettability, chemical affinity, thermal, chemical and mechanical stability.
- Development of polymeric and composite materials with advanced properties for packaging applications..Development of new polymeric materials and composites with advanced properties: active, smart, biodegradable, recyclable, edible, nanocomposites and biocomposites, for application in food and pharmaceutical preservation systems.
- Valorisation of plastic waste by means of mechanical, chemical, thermal and biological processes..Development of methodologies and physico-chemical analysis of plastic waste to establish the most appropriate valorisation strategies. Control of the stability and/or degradation of plastics.
- Design and application of ionic liquids and deep eutectic solvents (DES) as reaction media and catalysts.Synthesis of ionic liquids and deep eutectic solvents on demand as reaction media and/or catalysts. Study of the feasibility of the reaction process. Study of the feasibility of the solvent recovery process.
- Preparation of materials in supercritical conditions.Obtaining the optimum supercritical operating conditions for the preparation of materials. Modelling and kinetics of the reaction process.
- Modelling and simulation of property transport in polymeric membranes..Development of mathematical models, based on the finite element method (FEM), for the study of multicomponent matter transport, coupled or not to the transport of heat energy, through multilayer polymeric structures.
Name | Nature of participation | Entity | Description |
---|---|---|---|
JOSE DAVID BADIA VALIENTE | Director | Universitat de València | |
Research team | |||
VICENTE MARTINEZ SORIA | Member | Universitat de València | |
MARTA IZQUIERDO SANCHIS | Member | Universitat de València | |
JOSEP PASQUAL CERISUELO FERRIOLS | Member | Universitat de València | |
OSCAR GIL CASTELL | Member | Universitat de València | |
ROSANA MORIANA TORRO | Member | Universitat de València | |
FELIX EDUARDO MONTERO ROCCA | Member | Universitat de València | |
AMPARO CHAFER ORTEGA | Collaborator | Universitat de València | |
KAREN DAYANA GUTIERREZ SILVA | Collaborator | Universitat de València | |
Mireia Fernández Bazán | Collaborator | Universitat de València - Estudi General | UVEG PhD student |
Cristina Martin Poyo | Collaborator | Universitat de València - Estudi General | UVEG PhD student |
ALEJANDRO GALVEZ SUBIELA | Collaborator | Universitat de València | |
GORKA MARCO VELASCO | Collaborator | Universitat de València | |
MARIA CAMILA ARANGO SANCHEZ | Collaborator | Universitat de València |
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- Chemical Engineering
- membrana, tecnología, polímero, humectabilidad, efluentes, sostenibilidad
- tecnología, polímero, envase, embalaje
- valorización; reciclaje; residuos; plásticos; polímeros; sostenibilidad
- líquidos iónicos; disolventes eutécticos profundos; sostenibilidad
- reacción, fluidos supercríticos; cinéticas de reacción; modelización
- simulación, propiedades transporte, elementos finitos
- Residuos forestales; residuos agrícolas; residuos alimentarios; bioproductos industriales; industria de la madera; industria agroalimentaria; bioprocesos; polisacaridos; nanocelulosas, lignina, pectinas, taninos
- Biomateriales, productos alimentarios vegetales, sostenabilidad, economia circular,
- Contactor de membrana, metano, bioenergía, valorización, descarbonización, control de la contaminación atmosférica
- Tecnología de membrana, dióxido de carbono, metano, bioenergía, valorización, descarbonización, control de la contaminación atmosférica