Un projecte internacional coliderat per la Universitat obté 10 milions d'Europa per a millorar els models climàtics mitjançant 'machine learning'

  • Parc Científic
  • 14 d’octubre de 2019
 
L'equip d'USMILE
D'esquerra a dreta, Pierre Gentine, Markus Reichstein, Gustau Camps-Valls, Veronika Eyring

Gustau Camps-Valls, catedràtic d'Enginyeria Electrònica i investigador de l’Image Processing Laboratory (IPL) de la Universitat de València és un dels quatre Investigadors Principals del projecte ‘AI for Understanding and Modelling the Earth System with Machine Learning’ (USMILE), que acaba d'aconseguir una ajuda ERC Synergy Grants dotada amb 10 milions d'euros per a sis anys. L'objectiu del treball, que combinarà el machine learning amb models físics de l'atmosfera i de la Terra, és millorar els models climàtics i l'anàlisi i interpretació de les dades del sistema Terra.

Un equip interdisciplinari de quatre investigadors del Centre Aeroespacial Alemany (DLR), l'Institut Max Planck de Biogeoquímica, la Universitat de València i la Universitat de Columbia ha sigut guardonat amb una ajuda Synergy del Consell Europeu de Recerca (ERC) de 2019 per a comprendre i modelar el sistema Terra mitjançant aprenentatge estadístic (Machine Learning), un dels enfocaments hui dia més interessants de la Intel·ligència Artificial (IA). El prestigiós guardó, dotat amb 10 milions d'euros al llarg de sis anys, donarà suport a aquest innovador treball orientat a repensar el desenvolupament i l'avaluació dels models del sistema Terra, que són la base per a entendre i projectar el canvi climàtic.

Veronika Eyring, de l'Institut de Física Atmosfèrica del DLR i colíder del projecte comenta: "Ens unim per a optimitzar esforços combinant la nostra experiència multidisciplinària en modelatge climàtic, ecosistemes terrestres, machine learning i caracterització de núvols, amb la finalitat d'abordar algunes de les principals limitacions en simulació i anàlisi del canvi climàtic. Això ens permetrà comprendre millor els processos i descobrir causes i factors desconeguts en el sistema terrestre".

El projecte "Understanding and Modelling the Earth System with Machine Learning" (USMILE), ara finançat, està orientat a superar certes limitacions fonamentals per a la comprensió del sistema terrestre, augmentant així la capacitat dels científics per a simular i predir amb precisió i menor incertesa el canvi climàtic. Si bé els models del sistema Terra han millorat considerablement en les últimes dècades, la seua capacitat per a simular respostes quan es tracta de sistemes terrestres globals i regionals –que són fonamentals per a avaluar el canvi climàtic i els seus efectes sobre els ecosistemes i les poblacions del planeta– es veu limitada per la representació dels processos físics i biològics a petita escala, com els núvols, els estomes i els microbis.

"La nostra hipòtesi central és que aquesta falta de comprensió pot resoldre's mitjançant el machine learning. En primer lloc, disposem ja de gran quantitat de dades d'observació de la Terra amb una cobertura espacial i temporal sense precedents. En segon lloc, comptem amb models d'alta resolució per a la detecció de núvols que resolen explícitament processos a petita escala, com ho és la presència de núvols. Però aqueixes simulacions són molt costoses des del punt de vista computacional i, per tant, només poden executar-se durant un curt període de temps", assegura Pierre Gentine, de la Facultat d'Enginyeria i Ciències Aplicades de la Universitat de Columbia.

"I en tercer lloc – afig Gustau Camps-Valls, de la Universitat de València, altre dels quatre Investigadors Principals (IPs) del projecte–, el machine learning ha evolucionat ràpidament, permetent avanços en la detecció i anàlisi de relacions i patrons complexos en grans conjunts de dades multivariades. Ara no sols podem ajustar, predir i modelar funcions complexes, sinó que també podem aprendre relacions causals a partir de dades observacionals".

L'equip desenvoluparà algoritmes de machine learning per a millorar les dades d'observació de la Terra que tinguen en compte les covariàncies espai-temporals, així com les parametritzacions i submodels basats en l'aprenentatge estadístic per a núvols i processos de la superfície terrestre que han obstaculitzat el progrés en modelització del clima durant dècades. A més, detectaran i comprendran les maneres de variabilitat climàtica i els extrems climàtics multivariats, i descobriran aspectes dinàmics del sistema terrestre amb tècniques noves de deep learning (aprenentatge profund), interferència Bayesiana i descobriment causal.

Tradicionalment, la modelització física i el machine learning han sigut tractats com dos mons diferents amb paradigmes científics oposats: un basat en la teoria i l'altre basat en les dades. "Encara que té un potencial extraordinari, el machine learning a penes s'està utilitzant per a abordar la necessitat urgent de millorar la comprensió i la modelització del sistema terrestre. Esperem que, en tendir un pont entre la física i el machine learning, siguem capaços de revolucionar el modelatge i l'anàlisi dels sistemes de la Terra, i de propiciar projeccions climàtiques més sòlides a mitjà i llarg termini", diu Markus Reichstein, de l'Institut Max Planck de Biogeoquímica. "USMILE pot impulsar un canvi de paradigma en la modelització actual del sistema terrestre cap a una nova ciència basada en dades però al mateix temps conscient de la física", conclou.

Les ERC Synergy Grants es concedeixen a grups de dos i quatre co-IPs amb competències, coneixements i recursos complementaris, que puguen abordar conjuntament projectes que, per les seues característiques, no podrien resoldre's de manera individual. En el cas de USMILE, els quatre investigadors treballen a cavall entre l'estudi de sistema terrestre i la ciència de dades i els seus coneixements són complementaris. "Estem encantats de treballar junts en aquest equip interdisciplinari i agraïm a l'ERC la gran oportunitat que ens brinda", comenta Veronika Eyring.

Creat per la Unió Europea en 2007, el Consell Europeu d'Investigació (ERC) té la missió de fomentar la investigació de més alta qualitat a Europa a través d'un finançament competitiu i donar suport a la investigació de frontera en tots els camps de la ciència, sobre la base de l'excel·lència científica. Cada any selecciona i finança els millors investigadors creatius de qualsevol nacionalitat i edat per a executar projectes a Europa. L'ERC té diferents esquemes d'ajudes per a investigadors principals individuals –Starting Grants, Consolidator Grants i Advanced Grants–, a més de les Synergy Grants per a petits grups d'investigadors excel·lents.

Institucions amfitriones de USMILE:

Centre Aeroespacial Alemany (Deutsches Zentrum für Luft- und Raumfahrt, DLR). És el centre nacional d'investigació aeronàutica i espacial de la República Federal d'Alemanya. El seu extens treball de recerca i desenvolupament en aeronàutica, espai, energia, transport, seguretat i digitalització està integrat en empreses cooperatives nacionals i internacionals. DLR és responsable de la planificació i implementació de les activitats espacials d'Alemanya en nom del govern federal. DLR és també l'organització paraigua per a una de les agències de gestió de projectes més grans d'Alemanya.

Institut Max Planck de Biogeoquímica,  Jena, és part de la Societat Alemanya Max Planck. La seua missió és investigar els cicles biogeoquímics (carboni, aigua, nutrients) des d'escales locals a globals amb enfocaments que inclouen experiments de manipulació, observacions a llarg termini i enfocaments de modelatge dels processos i basat en dades.

Image Processing Lab (IPL) de la Universitat de València. La Universitat de València és una institució educativa i d'investigació de més de 500 anys, i una de les millors universitats en física, teledetecció i enginyeries a Espanya. El Image Processing Lab (IPL) és un centre multidisciplinari que reuneix més de 60 professors i investigadors en observació de la Terra, processament d'imatges, ciències de la visió i machine learning. El laboratori té col·laboracions actives amb ESA, NASA i EUMETSAT per a dissenyar nous dispositius sensors, campanyes de mesurament i cadenes de processament intensiu de dades. Els professors adscrits a l’IPL pertanyen a diferents departaments de la Universitat de València, des d'on formen a la nova generació de físics, científics de dades, analistes de teledetecció, matemàtics i enginyers elèctrics en diversos graus, màsters i doctorat.

Escola d'Enginyeria i Ciències Aplicades de la Universitat de Columbia. Columbia Engineering, amb seu a la ciutat de Nova York, és una de les millors escoles d'enginyeria dels EUA i una de les més antigues de la nació. També coneguda com l'Escola d'Enginyeria i Ciències Aplicades de la Fundació Fu, l'Escola expandeix el coneixement i avança la tecnologia a través de la investigació pionera dels seus més de 220 professors, alhora que forma els estudiants de pregrau i postgrau en un entorn col·laboratiu per a convertir-se en líders informats per una base ferma en Enginyeria. Els professors de l'escola treballen amb l'Institut de Ciència de Dades, l'Institut de la Terra, l'Institut Zuckerman Mind Brain Behavior, la Iniciativa de Medicina de Precisió i la Iniciativa Columbia Nano. Guiada per la seua visió estratègica –"Columbia Engineering for Humanity"–, l'escola té com a objectiu traduir idees en innovacions que fomenten una humanitat sostenible, saludable, segura, connectada i creativa.

 
 

Més informació:

Aquesta pàgina web utilitza cookies pròpies i de tercers amb fins tècnics , d'anàlisi del trànsit per facilitar la inserció de continguts en xarxes socials a petició de l'usuari . Si continua navegant , considerem que accepta el seu ús . Per a més informació consulte la nostrapolítica cookies